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Abstract

Unmanned underwater vehicles (UUVs) rely on acoustic communication to exchange
control commands and telemetry with a surface controller. However, underwater acoustic
channels are inherently unreliable due to multipath propagation, frequency-dependent at-
tenuation, ambient noise, and Doppler effects, often resulting in significant packet loss.
This unreliability poses a critical challenge in semi-autonomous UUV missions where
command continuity is essential but infrastructure-based solutions such as tethers or relay
nodes are impractical. Instead of attempting to eliminate packet loss entirely, this thesis
proposes a machine learning-based framework to reconstruct the content of lost command
packets in real time, enabling the vehicle to operate reliably even under harsh channel
conditions. To support this goal, a custom Python-based acoustic simulator was develo-
ped to model realistic underwater environments and generate detailed, labeled datasets
capturing both communication success and failure cases. These datasets include over 20
contextual features per packet, encompassing physical channel conditions, UUV dyna-
mics, and signal properties. Using this data, multiple deep learning models, namely
LSTM, CNN, and Transformer architectures, were trained and evaluated for their ability
to infer the most likely command and parameter values of lost packets. The framework
demonstrated that, with sufficient contextual awareness, it is possible to predict missing
messages with high accuracy, preserving the integrity of UUV missions without physical
link enhancements. This thesis contributes a novel software-defined strategy for loss
compensation in underwater communication, a modular simulation toolkit for reprodu-
cible experiments, and empirical validation of predictive models in reconstructing com-
mand content. The approach enhances mission safety, reduces latency due to retransmis-
sion cycles, and lays the groundwork for intelligent, loss-tolerant control systems in

bandwidth constrained underwater domains.

Keywords: Unmanned Underwater Vehicles, Acoustic Communication, Packet Loss Recon-
struction, Machine Learning, Underwater Simulation.
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1 Introduction

1.1 Problem Statement

Unmanned underwater vehicles (UUVs) rely on acoustic wireless links to exchange con-
trol commands and telemetry with a remote controller, as radio frequency and optical
signals are impractical for any significant distance underwater. However, underwater
acoustic communication channels are widely regarded as one of the most challenging and
unpredictable communication media in use. Factors such as frequency-dependent signal
attenuation, multipath propagation due to reflections, high ambient noise, and the low
speed of sound (<1500 m/s) lead to limited bandwidth and substantial latency [1]. These
harsh channel conditions often result in high error rates and intermittent connectivity,
making reliable real time control of UUVs difficult in practice. In effect, continuous and
robust communication remains a bottleneck for underwater vehicle operations, as even
moderate ranges or dynamic water conditions can cause significant packet loss and link

disruption [2].

In the specific scenario considered, the UUV is not fully autonomous and must receive
timely commands from a human operator to carry out its mission. Due to cost and com-
plexity constraints, the system does not employ tethered cables, signal repeaters, or relay
buoys to bolster the communication link, the vehicle depends solely on a direct acoustic
connection to the controller. This minimalist infrastructure underscores the critical im-
portance of the acoustic link’s reliability [3]. When command or telemetry packets are
lost over this single-hop link, the vehicle may fail to execute crucial maneuvers or report
its status, potentially jeopardizing mission safety. Unfortunately, such message losses are
not rare; under certain conditions of distance, interference, or noise, a substantial fraction
of transmitted packets may never reach their destination. The inability to predict when
these losses will occur exacerbates the risk, as operators currently have little forewarning

of a communication drop-out [4].

Addressing this problem requires a shift in focus from simply reacting to lost messages
toward estimating their original content. Instead of attempting to predict whether a packet
will be lost or not, this research concentrates on reconstructing the likely command and
parameter values of messages that have already been lost in the underwater acoustic chan-

nel. The core problem can thus be defined as: how can one predict, with useful accuracy,



the most probable command and associated parameter of a message that was not success-
fully received under current underwater channel conditions? To tackle this, a data-driven
approach is proposed. There is a notable gap in the literature regarding proactive estima-
tion of lost underwater command contents, and very limited empirical data are available
on packet content reconstruction in UUV acoustic links [5]. This absence of prior models
and datasets motivates the development of a novel predictive solution using machine
learning techniques to learn the complex relationship between environmental/operational

factors and message delivery outcomes.

1.2 Research Objectives

The primary objective of this research is to develop and validate a machine learning based
framework that can reconstruct the lost command contents in an underwater acoustic
communication system linking a surface controller with a UUV. In contrast to traditional
approaches that focus on improving link reliability via hardware enhancements or fail-
safe protocols, this study emphasizes a software-driven predictive strategy. By leveraging
patterns gleaned from data, the aim is to estimate the most likely command and parameter
that were lost, allowing the system to continue its operation with minimal disruption, even
when packet loss occurs. The successful outcome of this objective will be a model or set
of models capable of inferring the most probable command and parameter values of a lost
transmission based on relevant contextual features, effectively compensating for the miss-

ing data without altering the physical communication infrastructure.

Achieving this aim entails several specific sub-objectives. First, a realistic simulation en-
vironment must be created to generate the data necessary for training and testing the pre-
dictive models. Due to the specialized nature of underwater acoustic propagation, existing
network simulators (e.g., ns-3 with Aqua-Sim extensions) were assessed but found inad-
equate for the fine-grained control and customization required in this project [6]. There-
fore, the research includes the development of a custom Python-based simulator tailored
to UUV communication. This simulator is designed to model key acoustic channel effects
(such as range-dependent attenuation, noise variability, and multipath delays) and to em-
ulate the motion and operational behavior of the UUV and controller. By simulating nu-

merous message exchanges under varied environmental conditions and distances, the



simulator produces a rich dataset for analysis. In fact, two separate datasets are generated
to capture both communication directions: one for messages sent from the controller to
the UUV, and another for messages from the UUV back to the controller. Each dataset is
constructed with careful feature engineering to include parameters that might influence

communication performance and quality.

Second, using the data gathered from the simulation, the research objective is to train
supervised machine learning models that can predict the original content of a lost message
given the input features. This involves experimenting with various classification algo-
rithms to determine which can best capture the complex, non-linear interactions inherent
in the underwater channel. The models will be trained on one portion of the simulated
dataset and then validated on unseen data to assess their generalization performance. Key
performance metrics will be used to evaluate how accurately the model can reconstruct
both the command type and its corresponding parameter. An additional objective is to
compare the performance of different machine learning architectures for the packet con-
tent reconstruction task. Specifically, the study evaluates and contrasts the predictive ca-
pabilities of recurrent neural networks (RNN, specifically Long Short-Term Memory -
LSTM), convolutional neural networks (CNN), and transformer-based models. This com-
parative analysis aims to determine which model structure best captures the underlying
sequence patterns and nonlinear dependencies present in the underwater communication
data, and to assess their relative effectiveness in reconstructing lost command and param-

eter values under varying environmental and operational conditions.

Third, the research aims to interpret the trained model’s findings to some extent identify-
ing which features are most indicative of the lost message content thereby providing in-
sights into the environmental and operational conditions that most strongly affect mes-
sage reconstruction performance. By meeting these objectives, the study will produce not
only a predictive tool for message content reconstruction but also a deeper understanding

of UUV communication dynamics derived from the machine learning analysis.



1.3 Significance of the Study

Accurate compensation for lost acoustic messages is crucial to maintaining situational
awareness and closed-loop control of a UUV when packets inevitably disappear in a harsh
underwater channel. Current practice simply discards missing data and waits for the next
valid report, introducing latency and degrading control quality, especially for fine-grained
maneuvers or safety critical monitoring [2]. The framework proposed here addresses this
gap by supplying post-loss compensation estimates: as soon as a transmission is flagged
“lost” by a timeout or negative acknowledgement, the trained model infers the most prob-
able content of that packet from recent context and channel conditions. By filling in these
gaps, the controller can continue issuing informed commands and logging telemetry with-
out pausing for a costly retransmission cycle. This capability reduces the operational im-
pact of communication interruptions while retaining the cost benefits of a minimalist,

single-hop acoustic link.

Beyond immediate mission resilience, the study contributes a principled, data-driven
methodology for loss compensation that can be adapted to other low-bandwidth or inter-
mittently connected marine systems. By analyzing the correlation between measured
channel parameters (e.g., range-dependent attenuation or ambient noise) and message se-
mantics (e.g., depth or heading updates), the model learns to reconstruct likely packet
contents rather than merely interpolating them heuristically. The resulting technique out-
performs static estimation rules because it continuously refines its inference as environ-
mental or operational patterns shift [7]. Such adaptive post-loss prediction offers a light-
weight alternative to heavyweight forward error correction schemes, which often demand

higher bit budgets than practical in narrowband acoustic channels.

Finally, the custom simulator and twin datasets generated for this research supply a
unique resource for the broader underwater networking community. They capture both
downlink and uplink communication dynamics, each labelled with ground truth loss
events and corresponding compensation targets. These artefacts enable reproducible
benchmarking of compensation algorithms, fostering deeper investigation into feature
relevance and model robustness. Researchers and practitioners can extend the datasets
with additional environmental regimes, such as shallow water reverberation or thermo-

cline scattering, to stress test new approaches without costly sea trials. Accordingly, the



study not only advances immediate UUV reliability but also lays groundwork for a new

class of intelligent, loss tolerant underwater communication systems.

1.4 Thesis Structure

The first chapter, Introduction, defines the core research problem, unreliable acoustic
communication between a UUV and a surface controller, and motivates a predictive,
software-driven approach to reconstruct lost messages using machine learning. It outlines
the study’s objectives, significance, and constraints, emphasizing the importance of ma-
intaining operational continuity in underwater environments without relying on physical

infrastructure like cables or repeaters.

The second chapter, Literature Review, surveys the state of underwater acoustic networks
and reviews recent machine learning driven efforts in packet-loss prediction. It also high-
lights the limitations of traditional reliability mechanisms such as ARQ and FEC, and
identifies a gap in current research regarding post-loss message reconstruction, thereby

justifying the proposed direction.

The third chapter, Communication Media in Underwater Environments, evaluates the
physical transmission modalities available for underwater communication, radio frequ-
ency, optical, and acoustic, and explains the rationale for selecting acoustic transmission
as the only viable option for mid to long range UUV control, considering the trade-offs

in range, bandwidth, environmental sensitivity, and deployment complexity.

The fourth chapter, Packet-Loss Causation in Underwater Acoustic Links, provides a de-
tailed examination of the environmental and physical factors that degrade underwater
acoustic communication. It covers attenuation, multipath effects, Doppler shift, ambient
noise, and derives a mathematical model for packet-loss probability, offering a rigorous

foundation for the machine learning models used later in the thesis.

The fifth chapter, System Architecture and Design Choices, describes the complete arc-
hitecture of the UUV communication system, including the semi-autonomous control mo-

del, evaluation of tethered and relay-based alternatives, and the justification for adopting



a lean, software-centric approach. It articulates the design rationale behind excluding phy-

sical infrastructure in favor of predictive compensation techniques.

The sixth chapter, Simulation Framework, introduces a custom Python-based simulator
developed to replace traditional tools like Aqua-Sim. It details the simulator's architec-
ture, performance advantages, visualization interface, and how it was used to generate
rich, labeled datasets under varied acoustic and operational scenarios for training machine

learning models.

The seventh chapter, Data-Set Construction and Pre-Processing, explains the methodo-
logy used to extract downlink communication data, encode commands, bin and normalize
parameters, and ensure data integrity. It also discusses the application of dimensionality
reduction and data augmentation strategies to improve model generalization and training

robustness.

The eighth chapter, Model Selection and Training Methodology, outlines the candidate
machine learning architectures, including LSTM, CNN, and transformer models, and the
pipeline used for hyperparameter tuning and training. It also addresses overfitting miti-

gation techniques and sets the stage for performance benchmarking.

The ninth chapter, Experimental Results, presents the evaluation metrics used and com-
pares the performance of different model architectures on the test datasets. It assesses
how accurately each model can reconstruct lost commands and parameters, offering in-

sights into their respective strengths and limitations.

The tenth chapter, Discussion, interprets the experimental outcomes in the context of un-
derwater communication challenges. It reflects on the implications of the results, discus-
ses the limitations of the approach, and examines the generalizability of the models to

other scenarios or environments.

The eleventh chapter, Conclusions and Future Work, summarizes the key contributions
of the study, proposes a deployment roadmap for real world implementation, and outlines
several directions for future research, such as real time closed-loop control, multi-hop
networking, and the application of transfer learning to adapt the models across diverse

environmental conditions.



2. Literature Review

2.1 Underwater Acoustic Networks: State of the Art

Underwater acoustic networks (UANs) operate under extremely challenging physical
conditions distinct from terrestrial wireless systems. The acoustic channel offers orders
of magnitude lower bandwidth than radio and incurs very high propagation delays (on the
order of 0.5-1 second per kilometer) [4]. Signals are further degraded by strong attenua-
tion, multipath propagation, and time-varying ambient noise, all of which contribute to a
high probability of packet errors and losses in underwater links [8]. Consequently, relia-
ble data delivery underwater is far more difficult than in air, and a significant performance
gap remains despite intensive research efforts [9]. These fundamental limitations moti-
vate specialized communication techniques and network architectures tailored to the un-

derwater environment.

Researchers have explored a variety of strategies to improve reliability in UANs. How-
ever, directly applying conventional schemes from RF networks reveals inherent ineffi-
ciencies underwater. For example, automatic repeat request (ARQ) protocols become
problematic under long acoustic propagation delays, since waiting for acknowledgments
over such latencies greatly increases end to end transfer times [10]. Forward error correc-
tion (FEC) is a common alternative that adds redundancy to correct errors without re-
transmission, but selecting a fixed code rate is difficult, too little redundancy fails to cor-
rect errors, whereas too much wastes the scarce bandwidth, especially given the highly
variable channel conditions [11]. Adaptive and hybrid approaches have therefore been
proposed, combining FEC with selective ARQ to balance reliability and delay in acoustic
channels [11]. In addition, multi-hop network topologies using intermediate relay nodes
are often employed to extend range and improve end-to-end success rates, since a single
long range acoustic hop is prone to outages. Studies show that multi-hop relaying can
significantly boost communication reliability in underwater sensor networks by mitigat-

ing the severe attenuation and fading of long links [12].

In practical deployments, two distinct paradigms exist for underwater vehicle communi-

cation, each with its own state of the art solutions. On one hand, tethered systems such as



remotely operated vehicles (ROVs) maintain a direct cable link to a surface ship, provid-
ing high-throughput, virtually error free communication for real time control and data
transfer. This wired approach ensures minimal packet loss but is limited to relatively short
ranges and requires the constant presence of a support vessel, making it impractical for
deep or wide area missions [13]. On the other hand, fully autonomous underwater vehi-
cles (AUVs) sever the tether and rely on acoustic modems for wireless communication.
Acoustic links enable greater range and mobility but only support low data rates and in-
termittent connectivity, so AUVs must be designed with a high level of onboard auton-
omy to tolerate long periods of limited or no contact with the operator [7]. Current under-
water network architectures often incorporate additional infrastructure like surface gate-
ways or relay buoys to extend coverage, but deploying such repeaters adds complexity
and cost. Ensuring reliable command and control of an untethered UUV over a single-
hop acoustic link, without intermediate relays or a fully autonomous vehicle logic, thus

remains an open challenge in the field [14].

2.2 Machine-Learning-Driven Packet-Loss Prediction Studies

In recent years, machine learning (ML) techniques have been increasingly applied to
communication networks to predict and mitigate packet loss. The motivation is that com-
plex, non-linear interactions of factors affecting packet delivery can be learned from data,
enabling more adaptive and proactive strategies than traditional fixed algorithms [15].
Prior studies in wireless and sensor networks have demonstrated the feasibility of using
ML models to forecast network performance metrics such as packet loss rates or link
quality, which can then inform dynamic adjustments to protocols [16], [17]. This data-
driven approach is especially attractive in environments like underwater acoustics where
accurate analytical modeling of the channel is difficult. Instead of relying solely on sim-
plified theoretical models, ML can capture the subtle effects of time-varying channel con-
ditions and interference by training on empirical data, complementing or surpassing clas-

sical models under complex conditions [7].

Several studies have specifically explored ML-based packet loss prediction and network
optimization in underwater acoustic contexts. For instance, Kalaiarasu et al. developed a

logistic regression model to predict the packet success rate of an acoustic link based on



environmental features such as wind speed, tides, and currents, along with modem spe-
cific factors. Their results demonstrated that even relatively simple ML methods could
effectively capture spatio-temporal variations in link performance, quantifying underwa-
ter link reliability under changing conditions [18]. Furthermore, other researchers have
introduced environment aware learning models that utilize inputs like noise levels, dis-
tance, or water column properties. These models predict communication channel quality
in real time, enabling adaptive network adjustments, such as dynamically altering trans-

mission power or data rates, to minimize packet losses proactively [19].

Beyond simpler models, more advanced machine learning techniques have also been em-
ployed to enhance underwater acoustic communication. Deep learning approaches, for
example, have been investigated for underwater channel state prediction, leveraging neu-
ral networks to recognize complex patterns in signal fluctuations preceding packet errors
[20]. Similarly, neural-network-driven adaptation schemes have been proposed to fine-
tune network parameters dynamically. One notable study utilized a Bayesian regularized
neural network to optimize data rates in sensor networks, significantly reducing packet
loss and improving overall underwater link reliability [21]. Collectively, these efforts
highlight the growing interest in and potential of sophisticated ML methods for under-

standing and predicting underwater communication performance.

Most existing machine learning studies in underwater communications predominantly fo-
cus on forecasting or proactively preventing packet losses rather than dealing with them
after occurrence. Typically, the goal is to adjust communication strategies, such as mod-
ulation schemes, coding, routing paths, or transmission timing, to avoid packet drops al-
together, rather than reconstructing lost data. For instance, some researchers have trained
classifiers to identify periods of congestion or poor channel conditions in advance, allow-
ing data transmissions to be rescheduled or rerouted proactively, thus reducing packet
losses [22], [23]. Similarly, other methods utilize predictions of packet success probabil-
ity to implement adaptive redundancy or retransmissions, further reducing the likelihood

of packet loss [24].

However, comparatively little attention has been given to methods that actively address

packet losses after they have occurred, particularly in critical applications like underwater



command and control systems or essential sensor networks. In multimedia communica-
tions, the idea of packet loss concealment, using deep learning models to reconstruct
missing audio frames with minimal latency, is already well-established, enabling real
time error compensation [25], [26]. Yet, in underwater acoustic communication, the con-
cept of leveraging machine learning for reconstructing or estimating lost command and
control messages or sensor data remains largely unexplored. This thesis directly addresses
this gap by applying ML models specifically designed to estimate and compensate for
missing messages, aiming to significantly improve reliability and robustness in underwa-

ter communication systems.

2.3 Limitations of Current Approaches

Although many solutions exist to improve underwater communications, each approach
faces significant limitations in remote control scenarios involving UUVs. Infrastructure-
based solutions, such as multi-hop networking or relay nodes, can extend the range and
reliability of acoustic links. However, deploying additional relay buoys or support vehi-
cles is often costly, logistically challenging, and impractical for ad-hoc missions involv-
ing a single UUV [27]. Traditional reliable transport protocols, like ARQ, also face fun-
damental challenges. While ARQ schemes perform effectively in terrestrial environ-
ments, they become inefficient underwater due to long propagation delays. Waiting for
acknowledgments (ACKs) over distances of several kilometers significantly stalls

throughput and fails to meet real time control demands [24].

FEC techniques offer an alternative by encoding redundant data to correct errors at the
receiver without retransmissions, but they introduce critical trade-offs. In highly variable
underwater channels, choosing an optimal FEC code rate is difficult. A fixed setting can
either under protect transmissions when conditions worsen beyond the correction capa-
bility or over protect during favorable periods, unnecessarily consuming the already lim-
ited acoustic bandwidth [24]. Furthermore, the use of extensive redundancy or repeated
transmissions directly consumes valuable time and energy, thus reducing the net data

throughput available for critical vehicle control and telemetry tasks [28]. Therefore, con-

10



ventional reliability mechanisms either result in unacceptable delays or significant inef-
ficiencies when directly applied to acoustic UUV links, underscoring the necessity for

alternative methods tailored specifically to these challenging conditions.

The emerging ML-based approaches discussed previously have notable limitations that
current research aims to overcome. Primarily, these methods are designed to predict and
prevent packet loss proactively by optimizing link parameters. While beneficial for im-
proving throughput and avoiding delays, such approaches do not directly address scenar-
ios in which a packet has already been lost. Simply identifying that a loss is imminent
provides no solution for reconstructing or recovering the lost information, which is par-

ticularly critical in real time control situations [29], [30].

Moreover, practical deployment of these ML methods often faces constraints related to
data availability and model generalization. Certain models depend on external or chal-
lenging to obtain inputs, such as wind speed and current profiles required by logistic re-
gression models [31]. Acquiring such environmental data in real deployments, especially
for instantaneous predictions, may not be feasible. Additionally, models trained under
specific environmental conditions might fail to generalize effectively across different un-
derwater contexts, necessitating retraining for distinct scenarios such as transitioning
from shallow coastal waters to deep sea environments [32]. Furthermore, the robustness
of many ML approaches remains uncertain, as most models have been validated primarily
through simulations or limited experimental datasets. Consequently, their effectiveness
in the highly complex and unpredictable ocean environment remains unproven. Thus,
current ML-driven solutions, although promising, have yet to fully address the recon-
struction of lost messages and continue to rely on assumptions that limit their practicality

for underwater UUV communications.

A significant practical limitation in developing underwater communication protocols and
ML-based predictors lies in their reliance on simulations rather than Real world testing.
Because conducting sea trials is expensive and logistically challenging, researchers typi-
cally use simulation environments, such as ns-3 with underwater acoustic extensions like
Aqua-Sim, to emulate acoustic channels and network behaviors before deployment [6].

However, these simulators often emphasize either detailed physical-layer acoustics or
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high-level network protocols, rarely capturing both adequately. This limitation can pro-
duce biased or overly optimistic performance predictions, especially when simplified
models overlook critical interactions between layers [6]. Moreover, until recently, simu-
lator support for integrating machine learning models into network simulations was lim-
ited, complicating efforts to evaluate adaptive ML-driven network behaviors effectively

in virtual underwater environments [6].

To overcome some of these challenges, this thesis employs a Python-based custom sim-
ulator instead of complex network simulators to generate training and validation datasets
for ML models. This custom approach intentionally sacrifices certain low-level physical
realism for flexibility, allowing rapid iteration and controlled exploration of packet loss
events and their mitigation strategies. Nevertheless, findings obtained through simplified
simulations require subsequent validation under more realistic ocean conditions. Real
world experiments have uncovered factors, such as underwater currents causing physical
modem vibrations, that generic simulations often fail to represent accurately yet signifi-
cantly impact communication performance [33]. Thus, while simulation and data-driven
approaches are indispensable for initial development, their inherent limitations must be

acknowledged.

3. Communication Media in Underwater Environments

3.1 Radio Frequency Transmission

Radio frequency (RF) communication in underwater environments is fundamentally con-
strained by the medium’s electrical properties. Seawater is highly conductive and absorp-
tive to electromagnetic waves, causing RF signals to attenuate drastically even over very
short distances [34]. For example, a signal in the megahertz to gigahertz range (such as a
typical Wi-Fi frequency) may be reduced to negligible strength within a meter or two of
propagation in seawater [35]. In essence, while RF methods excel in air and vacuum, they
cannot achieve significant range beneath the water’s surface due to the rapid exponential

decay of electromagnetic energy in water [36].
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Figure 1 Underwater Wireless Communication Networks [37]

Meaningful underwater RF communication is only feasible at extremely low frequencies
where attenuation per unit distance is lower, but this comes at the cost of bandwidth and
practicality. Extra Low Frequency (ELF) signals (tens of hertz to a few kilohertz) can
penetrate deeper into seawater, which is why they have historically been used for one-
way submarine communication by naval forces. These ELF systems require enormous
antennas (often spanning kilometers) and offer only very low data rates, illustrating the
impracticality of RF for any high-throughput or real time underwater link [38]. For a
mobile UUV, towing or incorporating such large antenna systems is not viable, and the
bit rates achievable with low-frequency RF would be insufficient for timely control or

data exchange [39].

Overall, radio frequency transmission is deemed unsuitable for the UUV controller-to-
vehicle communication in this system. While niche scenarios exist, for instance, short
range RF links in shallow fresh water or a vehicle briefly surfacing to transmit data, these
do not meet the continuous underwater communication needs of an untethered UUV. The
severe attenuation, antenna size requirements, and negligible range of conventional RF
underwater mean that this modality cannot provide a reliable or practical channel for the
system in question [40]. Consequently, RF was ruled out as a communication medium in

favor of alternatives more compatible with underwater operation.
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3.2 Optical Transmission

Optical transmission refers to using light (typically lasers or LEDs) to carry information
through the water, and it offers a very different set of trade-offs compared to RF [41].
Water significantly absorbs and scatters light, though there is a relatively transparent win-
dow in the blue-green wavelengths where attenuation is minimized [42]. In ideal condi-
tions (clear water and optimal wavelength), optical signals can propagate on the order of
tens of meters before diminishing beyond usability. However, even within this favorable
spectrum, underwater optical communication is highly sensitive to environmental factors,
it essentially requires a clear, line-of-sight path between transmitter and receiver with

minimal turbidity or suspended particles [42].
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Figure 2 Underwater Wireless Optical Transmission [43]

The chief advantage of underwater optical communication is its potential for high band-
width and data rates [44]. Using modulated laser beams or high-power LEDs, experi-
mental systems have demonstrated data throughputs in the megabit to gigabit per second
range over short underwater distances. This capacity is orders of magnitude greater than
what acoustic systems can typically achieve [45]. In practice, though, such high-speed
optical links only work over relatively short ranges (often a few meters to a few tens of
meters) and under controlled conditions [45]. Any slight misalignment between a narrow

optical beam and the receiver can sever the link, and common occurrences like turbidity,
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plankton blooms, or even air bubbles can scatter the light and drastically reduce signal
quality. Furthermore, underwater optical channels can be disrupted by ambient light (for
example, sunlight filtering through water), which introduces background noise for optical

receivers [46], [47].

The deployment of an optical communication link for a UUV control system presents
significant challenges [48]. Precise alignment and tracking systems might be required to
keep a laser beam pointed at a moving UUV, adding complexity and cost to the system
[49]. The hardware for high-performance optical links, powerful lasers, collimated beam
optics, and sensitive photodetectors, can be power-hungry and expensive, which conflicts
with the desire for a low-complexity, energy-efficient setup [5S0]. Moreover, the reliability
of an optical link in the real ocean is questionable; any change in water clarity or orien-
tation could break the connection, potentially cutting off communication when it’s most
needed [51]. Given these constraints, optical transmission was not selected for the UUV’s
communication in this thesis. It is generally reserved for niche cases (such as short-range
high-speed data offloading or diver to diver communications in clear water) rather than
serving as the primary link for long-distance, continuous control of an underwater vehi-

cle.

3.3 Acoustic Transmission

Acoustic transmission uses sound waves to convey information and is the established
standard for underwater wireless communication [1]. Sound propagates very effectively
in water relative to electromagnetic waves; marine life has long exploited this fact (for
instance, whale vocalizations travel for miles underwater), and human technologies have
followed suit with sonar and acoustic modems [52]. In comparison to RF and optical
signals, acoustic waves experience far less attenuation in water, especially at low and
moderate frequencies [44]. As a result, underwater acoustic communications can achieve
ranges from hundreds of meters to several kilometers depending on frequency, power,
and environmental conditions. This ability to cover long distances makes acoustics the
only practical choice for most underwater networks and vehicle links, including the UUV

communication system considered here [9].
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Figure 3 Underwater Acoustic Communication [53]

Despite its range advantages, acoustic communication comes with significant physical
and technical limitations. The speed of sound in water is approximately 1500 m/s, much
slower than the speed of electromagnetic signals in air, leading to substantial propagation
delays (on the order of milliseconds per kilometer) for acoustic transmissions [54]. More-
over, the usable bandwidth of acoustic channels is inherently narrow. Effective underwa-
ter acoustic frequencies typically lie in the kilohertz range (from a few kHz up to a few
tens of kHz for longer ranges), which corresponds to only a few kilohertz of available
channel bandwidth. Consequently, acoustic data rates are modest: many off-the-shelf
acoustic modems offer only tens to a few thousands of bits per second, sufficient for low-
rate telemetry or command signals but far below terrestrial wireless or wired link capac-
ities [55]. Furthermore, the acoustic channel is fraught with impairments. Sound waves
reflect off the sea surface, seafloor, and underwater obstacles, creating multipath interfer-
ence where multiple delayed copies of a signal arrive at the receiver and interfere with
each other. The channel conditions also fluctuate with time as water conditions change
and as the platform moves. Combined with ambient underwater noise (from waves, rain,
marine life, and ship activity), these factors cause variable signal quality and can lead to

high packet error rates in acoustic communication [56], [57].

Even with these challenges, acoustic signaling was chosen as the medium for the UUV’s
communication link in this thesis due to the lack of any viable alternative for long range,
through-water connectivity. Acoustic modems are readily available and can be mounted

on both the UUV and the controller (e.g., a surface station), enabling a wireless link where
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RF or optical methods would fail to maintain continuity [52]. The inherent unreliability
of the acoustic channel (such as occasional message loss) is acknowledged and accepted
as a trade-off. By leveraging acoustic communication’s strength in reach, and compen-
sating for its weaknesses through techniques like machine learning based packet loss pre-
diction, the system achieves the required reliability without the need for cables, repeaters,

or other high-cost components [19].

3.4 Comparative Assessment of Modalities

Underwater communication technologies, RF, optical, and acoustic, exhibit distinct per-
formance profiles shaped by the unique characteristics of the underwater medium [58].
Each modality has specific strengths and weaknesses in terms of range, bandwidth, reli-
ability, and deployment complexity. While RF systems offer high data rates in terrestrial
contexts, their performance degrades rapidly underwater due to severe attenuation [59].
Optical communication can support extremely high data rates but is highly sensitive to
environmental conditions and alignment [60]. Acoustic communication, though slower
in data throughput, emerges as the most reliable and practical choice for most underwater

applications due to its extended range and robustness in diverse environments [61].

To complement the qualitative assessment, a numerically grounded comparison is pre-
sented in the following table. The values are drawn from established literature and repre-

sent typical performance characteristics observed under standard conditions:

Feature RF Communication Optical Communication Acoustic Communication
Range 1-2 meters 10-100 meters 500-5000 meters

Data Rate Up to 10 Mbps (at <1 m) | 10 Mbps — 1 Gbps 100 bps — 100 kbps
Latency <1 ms (short distances) | <1 ms (ideal conditions) 500 ms/km

Environmental | Very high — signal loss | Very high — affected by | Moderate, affected by

Sensitivity in<2m turbidity, misalignment noise, multipath
Line-of-Sight Strictly required Strictly required Not strictly required, can
Requirement use reflections
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Operational Requires large antennas | Needs beam tracking sys- | Simple hydrophones, mini-

Complexity or surface coupling tems mal alignment needed
Reliability Unreliable due to attenu- | Reliable in clear water Variable, but manageable
ation with error correction

Table 1 Comparison of Underwater Communication Modalities [4], [34], [62], [63]

The data clearly illustrate that acoustic communication, despite its lower bandwidth and
higher latency, is the only modality capable of sustaining reliable mid to long range com-
munication under water. RF signals become ineffective beyond very short distances, mak-
ing them impractical for UUV operations except in near-surface or partially emerged con-
figurations [59]. Optical links, although promising in bandwidth, are highly vulnerable to
underwater visibility conditions, misalignment, and the presence of suspended particles,
which limits their use to highly controlled scenarios [60]. In contrast, acoustic systems
tolerate variable environments, do not strictly require line-of-sight, and can operate over
distances spanning several kilometers, making them indispensable for robust underwater

connectivity [61].

Considering these quantified differences, the acoustic modality was selected as the com-
munication foundation for the UUV-controller link in this thesis. Its operational resilience
and extended range provide the most feasible path for untethered mission execution. Ad-
ditionally, its drawbacks, such as occasional packet loss, can be effectively mitigated
through adaptive machine learning models that enhance reliability and continuity without

requiring hardware modifications or costly infrastructure.

4. Packet-Loss Causation in Underwater Acoustic Links

4.1 Environmental Attenuation and Absorption

Temperature: Water temperature is a major factor in acoustic propagation. Variations in
temperature change the sound speed, causing acoustic rays to bend (refract) and altering
the effective transmission range [64]. Warmer water generally increases sound speed,

while sharp temperature gradients (thermoclines) can refract sound away from receivers
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or create shadow zones of poor reception [65]. Temperature also affects absorption char-
acteristics; higher temperatures tend to increase molecular absorption of sound at many

frequencies, further weakening signals over long distances [66].

Salinity: Differences in salinity (dissolved salt content) alter water density and sound
speed. Higher salinity produces a slight increase in sound speed [67], and salinity gradi-
ents (e.g. where freshwater and seawater meet) can deflect sound propagation [68]. Sound
traveling across a halocline (salinity interface) may bend or scatter due to the density
discontinuity [69]. Overall, significant salinity variations can lead to unpredictable prop-
agation paths and signal fading, contributing to packet loss in variable estuarine or coastal

environments [70].

Pressure (Depth): Hydrostatic pressure increases with depth, raising the sound speed and
shaping the sound speed profile of the ocean [71]. In deep water, higher pressure tends to
increase acoustic velocity, so sound rays may refract upward from high-pressure regions.
Pressure’s main impact is through these gradients: a deep transmitter/receiver may expe-
rience a different refractive environment than a shallow one [72]. The combined effect of
pressure and temperature profiles often creates complex sound channels or shadow zones

that affect reliability of communication links [72].

Depth of the Water Column: The overall water depth (and proximity of boundaries)
strongly influences acoustic losses. In shallow water, sound undergoes frequent reflec-
tions off the surface and seabed, leading to higher transmission loss, soft seabeds can
absorb energy and act as a low-pass filter, attenuating low-frequency components [73],
[74], [75]. This multipath-rich shallow environment causes fluctuations and can severely
degrade signal clarity. By contrast, deep water allows sound to travel without immediate
boundary losses; low-frequency sounds can propagate over much longer ranges in deep
ocean conditions (especially via the deep sound channel) with far less attenuation [76].
Thus, shallow deployments generally face higher packet loss due to multipath fading,

whereas greater depth can improve range (albeit with other challenges) [77].

Suspended Particles: Turbidity and particulate matter in the water (silt, organic matter,
or air bubbles) scatter and absorb acoustic energy. In waters with a high sediment load,

suspended particles redirect sound energy in many directions, effectively reducing the
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forward signal intensity [78]. Some of this scattered energy returns as backscatter (noise),
which can mask the intended signal [79]. In summary, the enhanced scattering of high-
frequency sound waves by small particles and air bubbles results in greater transmission

loss and a reduced signal-to-noise ratio.

Thermoclines: A thermocline is a layer with a steep temperature gradient, and it can dra-
matically affect acoustic propagation. When a warm, less dense layer sits above colder
water, sound speed drops rapidly with depth in the thermocline [80]. Acoustic waves
crossing a pronounced thermocline will refract, often bending downward in a warm-sea-
son thermocline, which can trap sound waves below the layer or prevent direct paths to
shallow receivers. This phenomenon sometimes creates a “shadow zone” of poor recep-
tion beyond the thermocline [81], [82]. On the other hand, certain thermocline structures
combined with pressure effects can form natural waveguides (e.g. the deep sound chan-
nel) that carry sound efficiently over long distances [83]. In either case, thermocline-in-
duced refraction leads to variability in reception and potential packet loss if the commu-

nication path is deflected away from the receiver.

Surface Agitation: Sea surface conditions (waves, swells, and surface turbulence) cause
the air-water boundary to become a dynamic, rough reflector. A calm, flat sea surface
behaves like a coherent mirror for sound, but a rough, wind-blown surface scatters acous-
tic energy in many directions [84]. Surface agitation not only produces additional ambient
noise (from breaking waves and bubble formation) but also disrupts the reliability of the
surface-reflected path. Signals reflecting off moving waves undergo Doppler shifts and
amplitude fluctuations, and some energy is lost into the atmosphere or scattered away
[85]. Thus, heavy surface agitation can lead to fast fading and packet errors on near-
surface acoustic links, as well as raising the noise floor that the receiver must contend

with.

4.2 Multipath Propagation and Doppler Effects

Underwater acoustic links frequently encounter multipath propagation, a phenomenon
where sound signals reach the receiver via multiple paths, such as direct, surface-re-
flected, and bottom-reflected trajectories. These different arrival times cause time disper-

sion, known as delay spread [86]. When the delay spread surpasses the symbol duration,
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intersymbol interference (ISI) occurs, where past and present symbols overlap, leading to
decoding errors. The impact of ISI is strongly influenced by the geometry of the commu-
nication link: vertical paths (from deep sources to surface receivers) typically exhibit
minimal delay, while horizontal, near-surface paths suffer from significantly longer de-
lays due to grazing angle reflections [87]. This extended delay spread introduces severe
frequency-selective fading, in which certain signal frequencies are reinforced while oth-
ers are attenuated, complicating equalization and reducing demodulation reliability [88].
Overall, multipath propagation causes amplitude and phase fluctuations and overlapping

echoes that significantly increase the packet error rate unless compensated with advanced

signal processing techniques [89].
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Figure 4 Underwater Acoustic Signal Propagation Paths [90]
Another major challenge in underwater communication is the Doppler effect, which
arises from relative motion between the transmitter, receiver, or reflective surfaces such
as waves or moving underwater vehicles [91]. Due to the relatively low speed of sound
underwater (~1500 m/s), even modest velocities can result in noticeable frequency shifts
[92]. When a receiver moves toward the source, the signal appears compressed in fre-
quency; when it moves away, the frequency appears stretched. These shifts can disrupt
the synchronization of the receiver's demodulation carrier, leading to symbol timing er-
rors and phase distortion [93]. Furthermore, in a multipath context, each path may un-

dergo a different Doppler shift, resulting in a phenomenon known as Doppler spread. This
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creates a time-varying channel where the carrier frequency and phase continuously fluc-
tuate, degrading the signal to noise ratio (SNR) and increasing the bit error rate. There-
fore, effective underwater communication systems must be capable of estimating and
compensating for Doppler effects in real time to prevent frequent packet losses, especially

in mobile scenarios [93].

In addition to their individual effects, multipath propagation and Doppler shifts interact
to make the underwater acoustic channel both frequency and time-selective, a condition
known as double selectivity. As the transmitter, receiver, or environment changes posi-
tion during transmission, the structure of the multipath signal also changes, causing the
channel characteristics to evolve even within a single packet duration [94]. These rapid
variations can exceed the adaptation capabilities of equalization algorithms, resulting in
bursty and unpredictable errors. When the channel's coherence time (the time span during
which it remains stable) is shorter than the duration of a packet, or when the coherence
bandwidth (the frequency range over which the channel response remains flat) is narrower
than the signal bandwidth, different parts of the signal may experience inconsistent fading
[95]. These conditions lead to irregular packet errors, where some transmissions succeed
while others fail catastrophically [96]. The simulation model used in this study incorpo-
rates both delay spread (to represent multipath effects) and relative speed (to represent
Doppler effects) to reproduce realistic underwater error behaviors. This modeling enables
the development of machine learning based strategies for predicting and mitigating packet

loss.

4.3 Ambient Noise and Interference Sources

The ocean is filled with background sound from physical environmental processes. Wind-
driven wave action is a primary contributor: breaking waves inject broadband noise (from
a few hundred hertz up to tens of kilohertz) due to spray and bursting bubbles [97]. Higher
sea states (strong winds and rough seas) correspond to higher ambient noise levels across
a wide frequency range, raising the acoustic noise floor [97]. Rainfall is another intermit-
tent but significant source, heavy rain can increase noise levels by up to 35 db across a
broad range of frequencies (from roughly 1000 Hz to greater than 50,000 Hz) [98]. Other

geophysical events such as cracking sea ice, undersea earthquakes, and volcanic eruptions
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contribute loud but localized noise [99], [100], [101]. At the upper end of the spectrum,
thermal noise dominates (above ~100 kHz): this is the ever-present random molecular
noise in the water [102]. These natural noise sources collectively form an ambient back-
ground din that limits the lowest achievable receiver noise level. When ambient noise is
high, the SNR of the communication link is reduced, making it more likely that packets
will be corrupted or drowned out by the noise [102], [103].

Figure 5 Underwater scenario illustrating complex noise sources [79]

Marine life also generates sound that can interfere with underwater communications.
Many marine animals use sound to communicate, navigate, and hunt, and their vocaliza-
tions add to the ambient noise, sometimes dramatically [104]. Blue and fin whales pro-
duce low-frequency sounds at frequencies of 10-40 Hz with estimated source levels of up
to 190 underwater dB at 1 meter. For example, during certain seasons, their vocalizations,
particularly in the 10-25 Hz range, have been observed to increase ambient noise levels
by 20-25 dB in some ocean regions, significantly influencing the underwater acoustic
environment [105]. At higher frequencies, snapping shrimp are notorious noise produc-
ers, in coastal tropical waters, colonies of snapping shrimp create a continuous crackling
noise with most energy in the 2-5 kHz range. Individual shrimp snaps have source levels
up to ~189 dB (re 1 pPa @1 m), and collectively these clicks dominate the background
noise in some shallow waters [106]. Dolphins and other odontocetes also emit clicks and
whistles in mid to high frequencies [107]. The presence of loud biological noise sources
effectively masks communication signals by raising the noise floor. For instance, a swarm

of snapping shrimp can severely limit acoustic system performance, their broadband
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snaps can mask modem signals and increase packet loss rates if operating in the same
band. In short, marine mammal calls, fish choruses, and snapping shrimp snaps are com-
mon biological interferers that reduce SNR and reliability for underwater links in certain

areas and times.

Figure 6 Natural and Anthropogenic Contributors to Underwater Ambient Noise [104]

Human activities have introduced significant noise into the oceans, often termed under-
water noise pollution. Chief among these is commercial shipping: distant ship traffic is
actually the primary source of low-frequency ambient noise in the 10-500 Hz band world-
wide. In coastal zones with heavy ship traffic, the background noise can be 12 dB higher
than in quiet regions, which can mask signals that lie in the same frequency band [108].
In addition to this continuous background from distant ships, nearby vessels produce loud
engine and propeller noise that can directly interfere with communications. Small work-
boats, for example, radiate noise in the kHz range that overlaps typical acoustic modem
frequencies, causing spikes of interference when they pass [109]. Other man-made noise
sources are impulsive and intense: seismic air gun blasts (for oil exploration), pile driving,
dredging, and active sonars all create high-amplitude sounds. These sources are often
localized in time and space (e.g., a seismic survey in a given region), but when present,
they can overwhelm communication signals [110]. For instance, an active naval sonar
ping in the 10-30 kHz range will raise the noise floor dramatically for a short period,
likely garbling any packets transmitted at that time [111]. All of these anthropogenic
noises reduce the SNR by adding interference energy in the communication band [112].

The result is an increased packet loss probability, either through masking (the interference
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noise makes the message unrecognizable at the receiver) or through collision (the inter-
fering signal is mistaken as data or corrupts the decoding process). In the context of this
thesis, such interference is treated as part of the environmental noise that our system must

overcome, emphasizing the need for robust modulation and error-correction schemes.

4.4 Overview of packet loss approach and loss formula

The research in this thesis has led to a unified derivation of the packet-loss probability
for underwater acoustic communication, beginning with a standard link-budget frame-
work and culminating in a closed-form expression that incorporates both large-scale path
loss and small-scale fading. Let d denote the slant range between transmitter and receiver
in meters, f the center frequency in kilohertz, P, the source-level acoustic power spectral
density at 1 m (in linear units, e.g., uPa®), and N the noise power spectral density at the
receiver (in the same units). The reference SNR at 1 m is defined as y, = P,/N. As the
acoustic wave propagates through seawater, it incurs a combination of geometric spread-
ing, frequency-dependent absorption, and site-specific anomaly losses, each expressed in
decibels. Geometric spreading is modeled by TLspread = 10n log 10 (d), where n is
the spreading exponent (unitless), taking values between 1 (cylindrical spreading) and 2
(spherical spreading). Frequency-dependent absorption is captured by Thorp’s empirical
formula [113], [114], which computes aygxm (f) in dB/km as

f* f? _
aspon () = 011 T 44 7750-—7275 x 107 £7 0,003,

valid for f > 0.3 kHz. Conversion to dB per meter yields @gqg/m(f) = @qpim(f)/1000.
A constant anomaly term A in dB accounts for additional boundary or scattering losses.

Summing these contributions produces the total transmission loss in dB:
TL(d, f) = 10n log;0(d) + agwm(f)d + A.

All instances of d within the logarithm and the absorption product are understood in me-
ters, ensuring unit consistency. A loss of x dB corresponds to a power-ratio attenuation

of 10%/19); hence, the linear attenuation factor is

Li,(d, ) = 10[TL@f)/10]
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which is dimensionless. Dividing the reference SNRy, by Ly;,(d, f) yields the large-scale
mean SNR at distance d:

@ f) = Yo _ Yo
Ymeanl@® S = (0 F) T 100107 1og1o(@)+aapm() d+A1/10

Rewriting 10[107 10810(@)/10] = g7 and collecting exponent terms provides the alterna-

tive form

_ Yo
Ymean(d, f) = d™ 10l@m(f) d/10] 1(lA/10]

This expression clarifies that geometric spreading contributes a multiplicative factor d ™,
absorption contributes 10!%am() d/101 "and anomaly loss contributes 1014/ within the
denominator. The resulting ¥,,.., remains unitless. Real acoustic channels exhibit rapid
fluctuations in instantaneous SNR due to multipath interference. Under the assumption
of Rayleigh-distributed small-scale fading [115], the instantaneous SNR y follows an ex-
ponential probability density function with mean ¥ = ¥ean(d, f), namely

et Yy

<l=<
v
o

py(y; T’) =

=<l =

Consequently, the cumulative distribution function is:

A packet is declared lost if the instantaneous SNR falls below a required threshold y,q.

Therefore, the outage probability or packet-loss probability is

Ploss(d' f) =
Pr{y <¥ieg} =
Fy(Veeqs 7) =

_Yreq
1—-—e Y

Substituting ¥ = ¥mean(d, f) yields:

Yreq

Ploss(d;f) =1- e_m

26



Upon inserting the explicit form of ¥;,..n (d, f), the exponent argument becomes

Yrea ym 4 glagsm(F) a/10] 1 gl4/10]
Yo

Thus, the fully expanded packet-loss probability is

_Yreq an 10[0‘dB/m(f) d/10] 10[4/10]

Ploss(drf) =1—-e Yo

In this form, y,.q/¥o 1s the normalized SNR threshold, d™ represents geometric spread-

ing, 10[%mm () a/10] captyres frequency-dependent absorption, and 1014/1°1 accounts for
any additional site anomaly loss. Any one of these factors may dominate under different
environmental conditions: at low frequencies or short distances, spreading loss may pre-
dominate, whereas at high frequencies or long distances, absorption can drive the expo-
nential factor to large values, making packet loss almost certain. Careful selection of f
and consideration of ambient noise N are required to maintain an acceptable ;... This
derivation rests on the narrowband assumption and presumes that ambient noise is sta-
tionary over the duration of each packet. In practice, real-time variation of noise levels or
dynamic multipath statistics may require more complex fading models (e.g., Ricean or
Nakagami) [116], but the form above provides a physically grounded, tractable basis for

simulation and machine-learning-driven loss prediction.

5. System Architecture and Design Choices

5.1 Controller-UUV Communication Model

The simulation casts the communication link between the surface controller and the UUV
as a single-hop acoustic channel governed by first-principles underwater-propagation
physics. Each endpoint instantiates an UnderwaterCommunicationModel, which, at
every simulation tick, evaluates Thorp absorption, geometric spreading, Rayleigh fading,
and a site-specific anomaly term to decide probabilistically whether the packet survives.
All calculations are performed in decibels and then converted to linear power units so that
the stochastic Bernoulli draw reflects the exact signal-to-noise ratio after path loss. This

per-packet evaluation reproduces the bursty, non-Gaussian error patterns observed in sea
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trials while avoiding empirical look-up tables, thereby ensuring that every impairment

arises from analytically traceable causes.

Traffic is transported in compact, explicitly typed packets whose structure is declared
in packet.py and serialized by packet formatter.py. A one byte command field distin-
guishes maneuver orders (MOVE, TURN, STOP, etc.) from telemetry frames, while a
variable-length payload and CRC footer preserve deterministic size accounting a critical
detail because packet length directly affects the SNR threshold required for error free
reception. During transmission the simulator computes slant range, depth offset, and am-
bient noise, converts the configured source level (dB re 1 pPa @ 1 m) to linear units,
overlays a Rayleigh-distributed fading realization, and returns either a delivery or drop
outcome. These steps occur inside simulation _controller.py, ensuring that vehicle mo-

tion, sensing, and communication remain causally synchronous.

Timing semantics receive the same rigor. For each surviving packet the model appends a
deterministic geometric delay d/c (with= 1497 m s! at the 12 kHz carrier chosen for this
study) and a stochastic multipath penalty drawn from an exponential distribution whose
mean depends on depth and sea state. Both components are logged alongside environ-
mental snapshots, enabling microsecond-accurate replay and analysis. The precision of
this timing model is reflected in validation runs at kilometer ranges the simulator repro-
duces round-trip latencies exceeding one second and the characteristic “packet cluster-

ing” caused by transient shadow zones, closely matching published modem data.

From a control-system perspective, the design forms a closed yet loosely coupled feed-
back loop. The topside operator issues intent-level commands while the UUV executes
them and periodically returns status and detection reports. Should a command packet be
lost, the UUV’s mission logic defaults to a conservative behavior (e.g., speed reduction
or heading hold) while awaiting the next valid instruction. This division of labor maxim-
izes operational safety without incurring the bandwidth penalties of full teleoperation.
Because every impairment is logged together with kinematic and environmental context,
the resulting datasets provide a rich foundation for subsequent data-driven performance

optimization and predictive modelling.
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5.2 Justification for Semi-Autonomous Operation

Operating a UUV with only an acoustic link necessitates a semi-autonomous control ap-
proach due to the fundamental limits of underwater communication. Unlike a tethered
system where a human operator can directly drive the vehicle in real time, an untethered
UUYV cannot depend on continuous joystick-level commands because the acoustic chan-
nel’s low bandwidth and high latency make rapid back-and-forth control infeasible [117],
[118]. If the UUV were fully remote-controlled over acoustics, even simple maneuvers
would be sluggish and prone to interruption by signal dropouts [119]. Therefore, the ve-
hicle is designed to carry out high-level intent commands autonomously, executing them
with onboard logic so that it does not require constant micromanagement. This approach
directly addresses the reality that underwater links can go silent for seconds at a time,

ensuring the UUV can maintain basic function during those gaps [120].

Adopting semi-autonomy is also a safety and reliability decision in the face of unpredict-
able packet loss. The UUV’s control software is built to recognize when expected com-
mands or acknowledgments haven’t arrived and then default to safe behaviors until com-
munication is restored [121]. For example, if a movement command is lost, the UUV can
automatically hold its last heading or slow to an idle crawl rather than continue on a po-
tentially hazardous path [122]. Such contingency logic prevents chaotic outcomes that
might occur if the vehicle were blindly dependent on every incoming instruction. By
granting the UUV a measure of decision-making for these contingency cases, the system
keeps the mission robust to temporary communication blackouts [123]. The operator re-
mains in charge of mission-level decisions, but the vehicle’s autonomy fills in the control
gaps, preventing minor link outages from escalating into mission failures or safety inci-

dents [124].

This justified design choice ensures that the UUV can carry out its objectives reliably in
a harsh channel, leveraging intelligent onboard control to complement the inherently lim-

ited acoustic connection.
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5.3 Assessment of Cable-Based Alternatives

A wired tether (cable-based communication) presents a seemingly straightforward solu-
tion to underwater communication issues, as it guarantees high-bandwidth, low-latency
data transfer to a UUV [125]. In principle, a fiber-optic or copper tether would eliminate
acoustic signal uncertainty, providing a virtually error free link for real time video, sensor
feeds, and precise teleoperation [126]. Tethered ROV systems indeed achieve reliable
control by maintaining a direct physical link to the surface, which can support continuous
commands and instant feedback [127]. For the purpose of this thesis, one could imagine
that replacing the acoustic channel with a cable might solve the packet loss problem out-
right. This alternative was considered in the design phase as a benchmark for maximum
communication reliability. It underscored how appealing a tether can be in guaranteeing
that every command and telemetry packet reaches its destination without being swal-

lowed by noise or distance [128].

Figure 7 A Cable Attached ROV [129]

On closer examination, however, tether-based communication imposes serious trade-offs
that conflict with the goals of a lightweight UUV system. Physically, a long cable adds
drag and tangling risk, impeding the vehicle’s mobility especially in strong currents or
cluttered environments [130]. The operational range becomes limited by the tether’s
length and weight deep dives or distant sorties would require managing a heavy, kilome-
ter-scale cable, which is logistically cumbersome [131], [132]. Moreover, a tether effec-
tively tethers the UUV to a manned support vessel at all times; this means the mission

would always need a nearby ship (and crew) to handle the cable reel and ensure it does
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not snag on obstacles. Such requirements drive up cost and complexity, as the vehicle can
no longer be a quick-deploy, low cost unit but part of a larger ROV-style infrastructure
[131]. In an environment where stealth or minimal disturbance is desired, a dangling cable
and surface ship presence can also be detrimental [133]. These drawbacks illustrate that
while a cable might solve the communication reliability issue, it does so by sacrificing
operational flexibility and increasing hardware overhead to an unacceptable degree for

our intended use.

In summary, although a cable-based alternative offers technical reliability in theory, its
limitations in range, deployment effort, and cost make it an unsuitable choice for a nimble
UUYV system. The design therefore reaffirmed the need to pursue an acoustic wireless
link augmented by intelligent control, rather than retreat to a conventional but cumber-

some tethered solution.

5.4 Cost and Performance Constraints of Signal Repeaters

Another avenue explored was the use of signal repeaters or relay nodes to strengthen the
acoustic communication link. In concept, deploying one or more intermediate acoustic
modems, for example, a moored relay buoy or an autonomous surface drone, could catch
messages from the controller and forward them to the UUV, effectively shortening the
distance each acoustic signal travels [134]. Multi-hop acoustic networks are known to
improve reliability by breaking a long, lossy link into several shorter, more manageable
hops [135]. For instance, a relay buoy at the midpoint could receive a weak UUV trans-
mission and immediately rebroadcast it toward the distant operator with less path loss per
segment. This approach promised to extend the range and robustness of the underwater
link, potentially reducing packet loss by avoiding singular deep fades or shadow zones

on a direct path [134].

The evaluation of repeaters quickly revealed significant cost and complexity concerns
that outweighed the potential benefits. Each additional relay node represents extra hard-
ware that must be purchased, deployed, and maintained [136]. For a single-UUV mission,
setting up even one or two repeaters can be logistically intensive: deployment might re-
quire separate deployment operations or vessels, precise placement in the water, and re-

trieval after the mission. These nodes would also need their own power source (batteries
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or a cable to surface power), and their operation would have to be synchronized with the
UUYV and controller to avoid interference [137]. In terms of performance, while repeaters
can improve nominal range, they introduce new points of failure and latency, if a relay
fails or drifts, the whole communication chain breaks down [138]. Multi-hop communi-
cation also incurs added propagation delay at each hop and potentially lowers the end-to-
end data rate due to the need for handshake protocols and scheduling between nodes
[139]. In effect, what might begin as a simple idea to boost signal strength evolves into a
full underwater network architecture, with all the associated complexities of network
routing, time synchronization, and message buffering. Such complexity is hard to justify
for what is meant to be an agile, on-demand communication link between one vehicle and

its operator [140].
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Figure 8 Underwater Signal Repeaters [141]

Instead, the preferred course of action focused on enhancing communication resilience
through smarter system design, prioritizing software-based improvements and predictive
algorithms over additional hardware. By avoiding the use of repeaters, the architecture

remains streamlined and cost efficient, maximizing performance across a single acoustic

link.

5.5 Anticipated Contributions and Design Rationale
The architecture advanced in this thesis is deliberately software-centric: it augments a

single-hop acoustic channel with semi-autonomous vehicle logic and machine learning
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based packet-loss prediction, thereby sustaining closed-loop control even when the phys-
ical link degrades. In operational terms this design confers three interconnected benefits.
First, resilience is achieved because all low-level actuation decisions are executed locally
on the UUV; the controller need only transmit high-level intent messages whose loss can
be compensated or predicted, so momentary blackouts no longer halt the mission. Second,
cost efficiency follows from the elimination of heavy infrastructure, as there are no fiber
or copper tethers, no surface repeaters, and no high-power deck units, so both capital
expenditure and recurring maintenance outlay remain modest. Third, operational agility
is improved because the vehicle can be launched and recovered rapidly, maneuver with-
out cable drag, and explore cluttered or confined environments that would otherwise
threaten a tether or fixed relay network. These advantages collectively expand the enve-
lope of feasible missions for research groups and small industrial operators that lack the

resources to field large support vessels or complex communication hardware.

Communication strategy

Principal advantages

Principal disadvantages

Direct single-hop acoustic
link

Minimal hardware and
deployment overhead; un-
restricted vehicle mobility

Low bandwidth and sound-
speed latency; susceptible to
transient blackouts

Cable-based tether (fiber or
copper)

Deterministic, high-rate,

low-latency connectivity

enabling continuous tele-
operation

Range and maneuver constraints
from tether drag; entanglement
risk; winch-handling logistics;

high capital and maintenance
cost

Relay-assisted multi-hop
acoustic network

Extended operational
range; improved signal-
to-noise ratio per hop

Additional hardware, power,
and mooring requirements; syn-
chronization and routing com-
plexity; cumulative latency;
multiple failure points

Table 2 Comparative appraisal of candidate communication strategies

Beyond immediate field utility, the work furnishes several artefacts of enduring value to
the research community. A deterministic Python-based simulator captures key acoustic
phenomena, range-dependent attenuation, multipath delay, ambient-noise variability,
while emulating realistic controller and UUV motion; paired data-logging modules gen-

erate parallel, perfectly labelled machine learning datasets for downlink and uplink traf-
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fic. Together with reference implementations of convolutional, recurrent, and trans-
former-based loss-prediction networks, these resources enable rigorous, reproducible
benchmarking of loss tolerant control schemes. Future investigators can extend the sim-
ulator to novel environmental regimes or plug in alternative predictors, thereby acceler-

ating comparative studies without incurring the cost of sea trials.

To justify the chosen communication stack, a formal trade-off study compared three ca-
nonical strategies, direct acoustic transmission, cable-based tethering, and relay-assisted
multi-hop networking, against bandwidth availability, propagation delay, vehicular mo-

bility, deployment logistics, and fault tolerance.

Direct, single-hop acoustic transmission offers the leanest hardware profile: a pair of mo-
dems suffices, launch procedures are uncomplicated, and the vehicle retains full six-de-
gree of freedom mobility. The unavoidable penalties, such as narrow spectral bandwidth,
latency caused by the low speed of sound, and vulnerability to stochastic fades, are in-
trinsic to the underwater medium. Crucially, these penalties become acceptable once local
autonomy assumes responsibility for fine-grained maneuver execution and once a predic-
tive model fills gaps in the command telemetry stream; what remains is a strategically

sparse but manageable flow of high-level instructions and status updates.

Cable-based solutions, whether fiber-optic or copper, virtually abolish channel uncer-
tainty by delivering deterministic, high-rate and low-latency connectivity. Yet empirical
surveys and field reports converge on a common set of drawbacks: tether drag curtails
surge and heave dynamics, entanglement hazards proliferate in reef, wreck, or ice envi-
ronments, and winch systems elevate deck-space requirements, crew workload, and
maintenance costs. These constraints clash with the agile and opportunistic deployment
scenarios, such as single-boat operations, rapid site hopping, and confined inspection cor-

ridors, that motivate the present study.

Relay-assisted multi-hop acoustic networks interpose surface buoys, moored nodes, or
autonomous gateway vessels to subdivide a long, lossy path into shorter, better-condi-
tioned segments. While this topology can extend range and improve per-hop signal-to-
noise ratios, each relay introduces a new point of mechanical, electrical, and protocol

failure. Power-supply provisioning, accurate mooring, time-synchronization routines,
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and inter-node handshake scheduling collectively inflate logistical complexity. Propaga-
tion and processing latency accumulate across hops, eroding real time responsiveness,
and for missions centered on a single UUV the incremental reliability gain seldom out-

weighs the overhead.

Against this comparative backdrop, the proposed architecture, which combines minimal
physical infrastructure with autonomy and predictive analytics, emerges as the most bal-
anced solution for cost-constrained, rapidly deployable UUV operations in harsh acoustic

environments.

6. Simulation Framework

6.1 Review of ns-3, Aqua-Sim and Related Tools

Underwater-network research still leans heavily on ns-3 and its spin-offs, the most prom-
inent being Aqua-Sim-NG [142]. Both are distributed as C++ extensions to the main-
stream ns-3 core, yet their underwater branches remain only sparsely documented [143].
The official Aqua-Sim-NG tutorial demonstrates packet routing in isolation but omits any
end-to-end script that couples mobility, acoustic propagation, and logging, a gap repeat-
edly noted in recent surveys of underwater-sensor-network simulators [143]. Practical
shortcomings began at the installation stage: Aqua-Sim-NG compiles cleanly only under
a specific GCC/GLIBC combination not shipped with current Ubuntu LTS releases, and
its example programs (dbr _example.cc, aqua_ping.cc) are known to crash unless patched

manually, an issue the maintainers still list as “open” [144].

Once running, the model reveals another limitation. ns-3 traces delivered packets and
queue lengths, but lost frames simply vanish from the event log [145]. For researchers
who need to tag every failure event, this omission forces intrusive modifications to the

MAC layer or external pcap post-processing [146].

Physics fidelity is serviceable yet rigid. Aqua-Sim-NG ships with a frequency-independ-
ent attenuation model that treats absorption as a constant, and Slotted FAMA is hard-
wired as the MAC [147]. Introducing Thorp absorption, or experimenting with pure-
ALOHA or CSMA variants, requires subclassing core C++ objects and recompiling large

portions of the framework, an extensibility bottleneck that has motivated newer forks
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such as Aqua-Sim FG, whose authors explicitly criticize the “inflexible, single-language

architecture” of earlier generations [6].

Finally, the user-interaction paradigm remains strictly script-driven. Simulation parame-
ters reside in C++ header constants or command-line flags; there is no built-in GUI to
visualize packet dynamics or adjust environmental variables on the fly [148]. Compara-
tive reviews of underwater robotic simulators identify this lack of interactivity as a major
barrier for multidisciplinary teams that include marine scientists and control engineers,

who expect real time feedback without editing code [149].

6.2 Motivation for a Custom Python-Based Simulator

The specific requirements of the research questions necessitated a simulation environ-
ment capable of rapid reconfiguration, real time visualization, and detailed inspection at
the packet level. The ns-3/Aqua-Sim-NG framework proved inadequate for these pur-
poses, as even minor modifications, such as adjusting path-loss coefficients, propagation
exponents, or SNR thresholds, entailed editing C++ header files, recompiling extensive
codebases, and restarting the simulation process [6], [150]. In contrast, implementing the
simulation entirely in Python addressed these limitations by enabling modular use of loss
functions and facilitating comprehensive parameter sweeps through scripting, thereby

eliminating the need for repeated compilation.

Productivity considerations amplified the case. Both development machines, an Apple
M4 MacBook Pro and an ASUS TUF (Ryzen 7 6800H + RTX 3060), are configured for
data-science workflows where Python is dominant. Aerospace and marine-engineering
studies repeatedly show 30-40 % shorter development cycles when exploratory modelling
remains in Python rather than oscillating between Python and C++ [151]. The language
also collapses the distance between physics, control logic, and machine learning pipe-
lines: the same interpreter that drives the event loop can feed NumPy arrays to PyTorch
or scikit-learn without serialization overhead, a need underscored in recent underwater-

network ML surveys [152].

Empirical performance evaluations further substantiated the choice of simulation frame-

work. On the test hardware, ns-3/Aqua-Sim required approximately 20-30 seconds to

36



execute an experiment involving 20,000 packets. In contrast, the custom Python-based
simulator, architected around a deterministic single-threaded event loop and optimized
through the use of cached acoustic coefficients, achieved execution speeds on the order
of 350,000 iterations per second. At the scale of one million events, as commonly en-
countered in Monte Carlo analyses, the bespoke simulator completed in a matter of sec-
onds. Conversely, the C++-based ns-3 framework incurred significantly higher latency,
often extending into minutes, largely due to overhead introduced by its hierarchical event
scheduler and heap-intensive queue structure, an inefficiency already noted in prior per-

formance assessments of large-scale underwater network simulations.

Equally critical to the simulation environment is the capability for interactive visualiza-
tion. Conventional network simulators typically output results in the form of trace files,
necessitating offline post-processing through auxiliary scripts. By contrast, the integra-
tion of Python’s libraries facilitated the development of a dynamic dashboard interface,
wherein parameters such as transmission power and carrier frequency can be adjusted in
real time via interactive sliders, with corresponding plots updating instantaneously. This
form of "steerable" interface aligns with the emerging expectations of multidisciplinary
research teams, who increasingly consider such interactive capabilities essential to ex-

ploratory and iterative workflows [153], [154].

Criterion ns-3 / Aqua-Sim-NG Custom Python simulator

Installation and
maintenance

Requires specific GCC/GLIBC ver-
sions; manual patches for sample pro-
grams; frequent recompilation after
edits

Pure-Python stack installable via
pip; no compiler dependencies;
hot-reload of modules during
runtime

Model extensi-
bility

Frequency-independent attenuation
hard-coded; Slotted FAMA fixed as
MAC; new physics or MAC layers
demand C++ subclassing and frame-
work rebuild

Loss models, MAC logic, and
channel coefficients swapped by
importing or editing Python
modules; no rebuild cycle

Packet-level ob-
servability

Delivered packets logged; lost frames
absent unless MAC is modified or
pcap is post-processed

Every packet recorded with ex-
plicit loss reason and timestamp
in CSV

Interactive con-
trol and visuali-
zation

Parameters set via header constants or
command-line flags; no native GUI

Real time dashboard with sliders
for power, frequency, and chan-
nel presets; live plots update
each tick

37




Execution per- . . _
formance (20 k 20-30 s on test hardware <0.Ison 1d¢nt1cg1 harc}ware =
350 k iterations s)
packets)
Scalability (1 M Minutes due to hierarchical scheduler Seponds owing to deterministic
events Monte- and heab-intensive queues single-thread loop and cached
Carlo) P q coefficients
, . Unified interpreter for simula-
Workflow inte- C++ core, separate Python scripts . .
ration needed for ML post-processing tion, NurnPy analytics, and
8 PyTorch/Scikit-learn pipelines

Table 3 Comparative assessment of ns-3/Aqua-Sim-NG and the custom Python simulator [6],
[155], [156], [157]

A side-by-side evaluation underscores that the C++-centric ns-3 ecosystem excels in ma-
turity yet imposes steep configuration friction, rigid channel abstractions, and limited in-
trospection of lost packets. The Python alternative eliminates compiler lock-in, records
every transmission outcome, enables slider-driven parameter sweeps, and completes mil-
lion-event Monte-Carlo trials in seconds rather than minutes while remaining resident in
the same environment used for downstream data analysis and machine learning experi-
ments. These cumulative advantages make the custom simulator the more suitable choice

for the iterative, multidisciplinary investigations pursued in this thesis.

6.3 Simulator Architecture, Modules and Workflow

The Python simulator is organized as a thin core of deterministic event-loop logic plus a
set of self-contained service modules. A single logical tick advances every subsystem in
lockstep so that vehicle motion, sensing, and acoustic propagation remain causally
aligned. All state changes flow through SimulationController, which orchestrates five

cooperating layers:

Layer Principal modules Primary responsibilities
Maintains 3-D positions, headings, depth and ve-
Environment game state.py locity constraints for the surface ship and UUV;
& Vehicles - ) spawns 5-15 random objects per mission and re-

solves detections inside a 50 m radius.

Mission Logic

simulation controller.py

Generates high-level commands
(MOVE, TURN, ASCEND, etc.), enforces safety
rules (800 m max separation, depth ceiling), and

schedules transmissions.

Acoustic
Channel

communication model.py,
acoustic physics.py,
acoustic config.py

Computes distance, depth offset and ambient
noise each tick; applies Thorp absorption, geomet-
ric spreading and Rayleigh fading; returns a Ber-
noulli success/fail plus propagation and multipath
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delays. Physics presets (Default, Deep-Water,
Harsh, etc.) are declared in acoustic_config.py.

Encodes command or telemetry payloads, ap-

ml csv_logger.py

Packet Ser- packet.py, pends CRC, decodes received packets, and rec-
vices packet formatter.py ords explicit loss reasons when a transmission
fails.
Streams two parallel logs: a human-readable mis-
1 oy, c | s
Data Export csv_logger.py sion timeline and an ML-ready dataset with >50

features per packet (distance, SNR, loss flag, de-

lay components, environmental snapshot).

Table 4 Simulation modules and responsibilities

At each tick the controller polls mission logic for the next command, asks Communica-
tionModel to simulate the outbound packet, advances vehicle kinematics based on any
successfully delivered command, and pushes all outcomes to the loggers. Because every
packet, successful or lost, produces a row in both CSV files, the resulting traces are per-

fectly labelled for supervised learning.

The core loop is single-threaded and uses cached physics coefficients (frequency-specific
a(f), pre-computed anomaly factors) to hold per-packet evaluation to a few dozen float-
ing-point operations. Deterministic seeding via Python’s random module guarantees bit-
for-bit repeatability, which is critical for ablation studies. When the Tkinter GUI (simu-
lation gui.py, launched by launch gui.py) is active, the event loop runs in a back-
ground thread while the main thread services real time plots and parameter sliders; com-
mand lamination ensures GUI edits take effect at the next tick boundary without race

conditions.

There are three entry scripts cover typical usage patterns:

e complex_simulation.py: Terminal integrated workflow without GUI, present-
ing different, predefined scenarios for quick tests.

e simulation_gui.py: Main launch file allowing users to manipulate every detail
of the simulation within the GUI. Offering live previews of the simulation, de-
tailed logging and CSV outputs.

e analyze_ simulation.py: Offline post-processing; loads the CSV outputs, com-

putes delay histograms and produces correlation heat-maps.

39



In aggregate, the architecture fuses first-principles acoustics with mission-aware control
logic inside one interpreter. Loose coupling via plain Python objects keeps modules re-
placeable (e.g., swap Rayleigh for Rician fading or add a Doppler term) while the deter-

ministic scheduler guarantees that every change is observable and attributable.

6.4 Simulation GUI

Frequent parameter sweeps quickly revealed that editing source files and restarting the
interpreter for every trial was an unacceptable bottleneck. To eliminate this friction and
to let non-programmers vary acoustic or mission settings without touching code, a dedi-

cated graphical interface was developed and integrated with the Python core.

4 TACTICAL UUV COMMAND & CONTROL SYSTEM 4

MISSION CONFIG TACTICAL CONTROL TACTICAL DISPLAY INTELLIGENCE

TACTICAL UUV COMMUNICATION SYSTEM

CLASSIFIED UNDERWATER ACOUSTIC WARFARE SIMULATION

MISSION CONFIG
CONTROL

ICAL DISPLAY
ICE REPORT

TACTICAL COMMAND OPTIONS

TEM STATUS

ATIONAL - READY FOR DEPLOYMENT

Figure 9 Simulation GUI, Command Center Page

The graphical front-end (simulation_gui.py) provides an operator-oriented control station
whose layout mirrors conventional command and control consoles. Upon launch the ap-
plication opens with the Command Center tab, which displays system readiness, quick-
start shortcuts, and high-level status messages. Navigation across the remaining four tabs,
Mission Config, Tactical Control, Tactical Display, and Intelligence, is handled by a
themed ttk.Notebook widget whose state can be updated programmatically, permitting
automated test scripts to progress through the same interface that a human operator would

employ.
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COMMAND CENTER MISSION CONFIG TACTICAL CONTROL TACTICAL DISPLAY INTELLIGENCE

TACTICAL PRESET CONFIGURATIONS

DEFAULT TACTICAL @ SHALLOW WATER OPS
DEEP WATER OPS @ HIGH NOISE ENV
LOW POWER MODE @ HARSH ENVIRONMENT

REALISTIC TESTING

CUSTOM ACOUSTIC PARAMETERS

Transmission Power (dB re 1 uPa): Required SNR (dB):
170.0 dB

Frequency (kHz): Spreading Exponent:
12.0 kHz

Noise Level (dB re 1 uPa): Site Anomaly (dB):
50.0 dB

7 Apply Custom Configuration

EXPERIMENTAL PARAMETERS

Max Safe Distance (m): Max Operational Range (m): Turn Rate (°/tick):
5000m 15000m 15.0°/tick

World Size (m): Movement Aggressiveness: Depth Change Rate (m/tick):
3000m 0.7 5.0 m/tick

Detection Range (m): Submarine Speed (m/tick):
80m 12.0 mftick

! HIGH-PERFORMANCE MODE SETTINGS

Apply Experimental Parameters

Figure 10 Simulation GUI, Configuration Panel

The Mission Config tab exposes two layers of parameterization. Seven acoustic presets
encapsulate common operational regimes (default, shallow water, deep-water, high-
noise, low-power, harsh, and realistic testing), allowing a novice user to replicate repre-
sentative sea states with a single click. Below the presets, a Custom Acoustic Parameters
panel provides slider-controlled access to source-level, carrier frequency, ambient-noise
level, required SNR, geometric spreading exponent, and site anomaly. All sliders are
equipped with contextual tool-tips that summarize typical value ranges and their physical
implications. A separate Experimental Parameters section offers extended mission varia-
bles, maximum safe distance, world size, detection range, vehicle speed, turn and depth

rates, movement aggressiveness, and cumulative operational range, enabling stress tests
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well beyond the operating envelope of most academic test beds. Pressing Apply Experi-
mental Parameters stores the current values in a dictionary passed by reference to the

simulation core, guaranteeing consistency between GUI state and back-end execution.

4 TACTICAL UUV COMMAND & CONTROL SYSTEM 4

COMMAND CENTER | MISSION CONFIG TACTICAL DISPLAY | INTELLK IGENCE

SIMULATION PARAMETERS

ission Dy

MISSION LAUNCH CONTROL

e

CURRENT MISSION PARAMETERS

MISSION PROGRESS MONITOR

Figure 11 Simulation GUI, Simulation Starting Interface

The Tactical Control tab functions as the launch console. Mission duration (tick count)
and world-boundary size are entered through numeric widgets; radio buttons select either
a single-configuration run or an automatic multi-configuration comparison. When the op-
erator authorizes launch, the GUI spawns a daemon thread that drives the deterministic
event loop while returning periodic progress updates via a thread-safe queue. Because the
simulation thread never blocks the main tick event loop, the interface remains responsive
even during million-tick missions. A corresponding Emergency Abort button raises a
cancellation flag that is polled by the back-end at each tick, providing graceful termina-

tion without risking state corruption.
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4 TACTICAL UUV COMMAND & CONTROL SYSTEM %4

COMMAND CENTER | MISSIONCONFIG | TACTICAL CONTROL

MISSION CONTROL DASHBOARD

LIVE TELEMETRY DATA MISS NSOLE LOG

™ MISSION COMPLETING

Figure 12 Simulation GUI, Live Dashboard

Real time feedback is concentrated in the Tactical Display tab. Twelve telemetry fields,
mission tick, packet-success ratio, slant range, depth, heading, cumulative commands,
and so forth, are updated at user-defined intervals. Color coding (green > 80 % success,
amber 50-80 %, red < 50 %) conveys link health at a glance, while a sci-fi-style console
log streams timestamped messages classified by severity. The log supports ANSI-style
color tags and auto-scrolls to the latest entry; this design obviates post-run parsing for
most diagnostic tasks. Internally, updates are rate-limited and batch-processed to decou-
ple GUI refresh frequency from physics-tick frequency, ensuring constant-time UI over-

head irrespective of simulation scale.
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4 TACTICAL UUV COMMAND & CONTROL SYSTEM 4

MISSION INTELLIGENCE REPORT

Figure 13 Simulation GUI, Finished Simulation Interface

Upon completion the Intelligence tab renders a structured mission report produced by
SimulationController. generate final report(). The report aggregates summary statistics,
communication metrics, detection outcomes, and environmental conditions into a narra-
tive suitable for direct inclusion in technical appendices. Export operations support three
tiers of output. First one being human-readable mission logs for analyzing the status of
the simulation. Second output is ML-optimized CSV datasets and finally, a JSON snap-
shot of the internal simulation state. The export routine includes robust error handling,

progress notifications, and platform-specific hooks to open the target directory in Finder.

6.5 Integrating Package Loss Formula to Simulation

The loss-calculation pipeline is housed in two tightly coupled modules. acoustic con-
fig.py groups every tunable constant, source level, ambient-noise pressure, frequency,
spreading exponent, site anomaly, inside a data class that pre-computes all unit conver-
sions at construction time. Values expressed in underwater-acoustics convention (dB re
1 pPa for pressure, dB for SNR) are turned into linear pressure or power ratios once,

cached as properties, and exposed to the rest of the code through a plain-Python object.
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This object is passed by reference to communication _model.py, ensuring that a change in
the GUI slider or CLI preset propagates automatically to every subsequent packet evalu-

ation without global variables.

acoustic_physics.py translates those configuration fields into a per-packet decision. First,
alpha_thorp() computes the absorption coefficient in dB m™ from Thorp’s canonical
quartic, then transmission loss() combines it with 10 n logio d spreading and any site
anomaly. The function immediately converts total loss to a linear attenuation factor, elim-
inating repeated exponentiation later in the loop. compute gamma mean() multiplies that
factor with cached source-to-noise power ratios to obtain the large-scale mean SNR, and
finally packet loss probability() feeds the Rayleigh-fading outage expression to yield a
scalar probability between 0 and 1. Because each routine returns scalars, the entire path
involves roughly forty floating-point operations and no external libraries beyond math.
Frequency in kilohertz, o(f), and the anomaly term are stored as private attributes in the
UnderwaterCommunicationModel constructor so that subsequent packets incur only mul-

tiplications and a single logarithm.

When simulation_controller.py schedules a command or status update, it hands the packet
to the channel model along with the current slant range, depth offset, and packet size in
bytes. The model consults the configuration’s size-adjustment block, baseline size, scal-
ing factor, and cap, to inflate the raw loss probability for exceptionally long frames, re-
flecting the longer on-air time they occupy. A single call to Python’s seeded random.ran-
dom() then decides success or failure, and the outcome is wrapped in a tuple containing
a boolean flag, the reason label (good snr, moderate snr, low_snr, out of range), and
the deterministic propagation plus multipath delay. Because the channel function is in-
voked exactly once per packet, every loss event is synchronized with vehicle state and
logged immediately by both csv_logger.py and ml _csv_logger.py. The ML logger rec-
ords more than fifty features, distance, attenuation, mean SNR, instantaneous loss prob-
ability, packet size penalty, delay components, creating a training corpus in which every

sample is fully explained by first-principles physics.

Optimization keeps the loop responsive even at hundreds of thousands of iterations per
second. All logarithms and exponentials are consolidated, a(f) is memorized, and the

anomaly penalty is pre-converted to linear form. The system is deterministic under a seed,
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enabling bit-wise replay for regression tests or ablation studies. Finally, the physics kernel
is isolated behind four pure functions; swapping Rayleigh for Rician fading, inserting a
Doppler term, or experimenting with an empirical lookup table requires editing only
acoustic_physics.py, leaving mission logic, GUI code, and data loggers untouched, an

architecture choice that preserves clarity while supporting future expansion.

6.6 Limitations of used simulator

Despite its fully integrated physics to control pipeline, the current simulator still abstracts
away several phenomena that matter in Real world acoustic operations. The propagation
model, while accurate for mean path-loss and Rayleigh fading, omits frequency disper-
sion, Doppler spread, and surface/bottom reflection geometry. Consequently, multipath
is represented by a single exponential delay term rather than a stochastic cluster of arrivals
whose power and delay spreads vary with grazing angle and sea state. This simplification
is acceptable for range and loss studies but limits the tool’s fidelity when researchers wish
to evaluate modem synchronization routines or adaptive equalization that are sensitive to

delay-spread statistics.

The event loop is designed around a single transmitter—receiver pair; adding multiple
UUVs or relay nodes is theoretically straightforward, each would instantiate its own Un-
derwaterCommunicationModel, but practical scaling has not yet been stress tested. With-
out a collision resolution layer, simultaneous transmissions on the same tick would effec-
tively pass through independent channels, ignoring co-channel interference and capture
effects that are known to degrade acoustic network throughput. Likewise, the simulator
provides no MAC layer beyond implicit send/receive timing, so protocols such as Slotted
FAMA, CSMA, or TDMA would have to be prototyped manually at the mission logic

level.

Vehicle dynamics follow a first-order kinematic model, constant surge speed and instan-
taneous turns, sufficient for communication focused experiments but not for fine grained
maneuver validation. No thruster saturation, inertial coupling, or energy budget is mod-
elled; hence, scenarios with extended missions cannot explore trade-offs between propul-

sion power and acoustic duty cycle. Environmental sensors are generated from static
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depth-based curves or random draws; temporal evolution of temperature, salinity, or noise

due to diurnal cycles and weather fronts is left for future work.

Finally, although the single-thread deterministic loop delivers impressive speed on com-
modity laptops, it relies on the Global Interpreter Lock; scaling to millions of packets per
second or to real time hardware in the loop will eventually demand either multiprocessing
queues or a compiled back-end system. Memory usage is modest (array-based logs rather
than in-memory event traces), yet very long runs still accumulate gigabytes of CSV data,

calling for chunked writing or on the fly compression in future versions.

7. Data-Set Construction and Pre-Processing

7.1 Source Log and Down-link Extraction

7.1.1 Raw Source Log

Attribute Data type Attribute Data Type
tick integer heading float
event_type string submarine_state string
success boolean status_lost boolean
command string detected object id integer
command param float detected object type string
command lost boolean detected object distance float
status_code hexadecimal communication_distance float
depth float packet_size integer
pressure float objects_detected_total integer
pos_x float distance traveled float
pos_y float in_bounds boolean
pos_z float

Table 5 Attributes and data types of simulation log

The raw event trace begins with the tick column, a strictly monotonic integer counter that

advances from 0 to tick number specified from the simulation GUI without reset. Because
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every simulator subsystem writes exactly once per tick, this counter is a globally con-
sistent time base: it eliminates the need for resampling, interpolation, or clock-synchro-
nization heuristics when constructing fixed length input windows for sequence models.
Adjacent to the tick is event type, a categorical label that assigns each record to one of
four subsystems: command, status, mission_update, or communication. This explicit typ-
ing makes it possible to filter the down-link control channel (commands) while retaining
the full bidirectional trace for future work on uplink asymmetry or network wide traffic

analysis.

Three Boolean outcome flags, success, command _lost, and status_lost, partition transport
errors from logical failures. A row marked success = False but with both loss flags clear
indicates that the controller rejected the action for internal reasons (e.g. depth ceiling ex-
ceeded), whereas a command_lost = True row denotes an acoustic dropout that occurred
after the packet left the controller. This dual flag scheme enables learning algorithms to
focus on channel unreliability without conflating it with mission logic constraints. More-
over, because a lost packet cannot be simultaneously successful, the flags are mutually

exclusive, which simplifies the design of loss functions that require disjoint target classes.

The maneuver itself is encoded in two fields. command stores the high level action re-
quested by the operator (MOVE, TURN, ASCEND, DESCEND), and command param
records its magnitude in native units (meters or degrees). In later preprocessing the com-
mand name is transformed into two binary predictors, while the parameter is discretized
into sixty-four equal width bins and fanned out into six binary features (param_bit5 ...
param_bit0). This representation retains ordinal structure and avoids the sparsity of one-
hot vectors, thereby reducing memory footprint and accelerating convergence in neural

models that exploit bit masking and integer arithmetic.

Uplink telemetry appears under status_code, a two-byte hexadecimal word that summa-
rizes vehicle health and sensor states, and submarine_state, a finite state machine label
(idle, search, return, etc.) reflecting the current mission phase. Although these columns
are not used in the down-link study reported here, they are preserved verbatim to support
future investigations into closed-loop control and anomaly detection, where correlations

between vehicle state and channel quality may prove informative.

48



Environmental and kinematic context enters through depth, pressure, pos x, pos_y,
pos_z, and heading. Depth (meters) and pressure (pascals) form a redundant pair that
allows consistency checks against hydrostatic expectations; large discrepancies can flag
sensor faults during simulated or test runs. The three Cartesian coordinates define a ship-
centered reference frame and are later collapsed into a radial distance to remove colline-
arity while preserving range dependence, which is a critical driver of acoustic attenuation.
Heading records the vehicle’s yaw angle and provides additional temporal structure for

models that attempt to infer motion patterns from command sequences.

Channel-specific metrics include communication_distance, the slant range between trans-
mitter and receiver at send time, and packet_size, the frame length in bytes. Longer ranges
attenuate SNR according to Thorp absorption and geometric spreading, whereas larger
packets incur higher on-air time and therefore greater exposure to Rayleigh fading. Re-
taining both fields in the raw log ensures that any future re-parameterization of the loss

model can be performed offline without rerunning the simulator.

Object interaction fields, detected object id, detected object type, and detected ob-
ject distance, capture sonar detections that occur during the mission. Together they ena-
ble post-hoc evaluation of detection recall and false alarm rates as a function of commu-
nication success, depth, and mission phase. By correlating these detections with packet-
loss events, subsequent studies can explore whether situational awareness deteriorates

systematically under poor channel conditions.

Finally, three aggregate indicators, objects detected total, distance traveled, and
in_bounds, provide continuous mission context. The running count of detected objects
and the cumulative path length allow analysts to stratify the dataset by exploration pro-
gress or energy expenditure, while the in_bounds flag, which toggles when the UUV exits
the predefined world box, simplifies the identification of outlier rows that fall outside the
intended operational envelope. Together these attributes furnish a self-contained, richly

annotated timeline that underpins every preprocessing.
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7.1.2 Down-link Extraction

The learning corpus derives from the one-million tick master log discussed earlier. Stored
as commands.csv, this file contains roughly 250 MB of time ordered records, each row
capturing the full controller-UUV dialogue and the environmental snapshot summarized
in table 5 Because the simulator writes at every tick, regardless of channel outcome, the
log provides both dense temporal coverage and explicit negative evidence for every lost
frame, which is essential for sequence models that require complete data without gaps or

ambiguous labels.

Isolating the down-link channel begins with a simple filter: rows whose event_type equals
command are retained, while status, mission_update, and communication events are set
aside for future bidirectional studies. The surviving maneuver labels, MOVE, TURN,
ASCEND, and DESCEND, are mapped to integer codes 0 to 3 and decomposed into
command bitl and command bit0, yielding a compact categorical encoding that pre-
serves ordinal structure while avoiding one-hot sparsity. The continuous parameter asso-
ciated with each command (meters to move, degrees to turn, meters to ascend/descend)
is discretized into sixty-four equal width bins of five units; the resulting index is expanded

across six binary predictors (param_bit5 through param_bit0).

Outcome fields are converted into mutually exclusive Boolean targets: success flag
marks actions successfully executed by the vehicle, whereas lost flag records acoustic
drop-outs. By construction a lost packet cannot be successful, so the exclusivity constraint
simplifies downstream loss functions. Although the simulator produced no missing val-
ues in this run, the preprocessing script defensively replaces any potential NaNs with
logical zeros before casting to integer types, preserving schema stability for future exper-

iments.

After transformation, the dataset contracts from 250 MB to approximately 20 MB, yet
retains a one-to-one correspondence with simulation ticks. The resulting processed com-
mands.csv contains twelve dense predictors: tick, two command bits, six parameter bits,
and the dual outcome flags, providing a ready to use feature set for LSTM, CNN, and
Transformer models. Meanwhile, the untouched uplink portion of the original log remains
available, ensuring the study can later be extended to status telemetry prediction or joint

bidirectional modelling without rerunning the simulator.
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7.2 Binary Encoding and Feature Engineering

7.2.1 Command Encoding

All maneuver labels generated by the simulator, MOVE, TURN, ASCEND, and DE-
SCEND, are compressed into two binary predictors. Each command is assigned an integer
code from 0 to 3, which is then decomposed into command_bitl and command_bit0. This
encoding strategy captures categorical information without the memory inefficiency of

one-hot vectors, preserving compactness and model interpretability.

During long simulation runs, occasional command field omissions occurred. These are
automatically replaced with a neutral code (interpreted as MOVE), and each correction
is logged for reproducibility. As both bits are binary (0 or 1), no additional normalization

is required; they are directly usable as float tensors for model input.

7.2.2 Parameter Binning and Normalization

The continuous command parameter, command param, ranges from small maneuvers to
large adjustments. It is first bucketed using floor division by five to produce a six-bit
integer index (0-63). This index is then decomposed into param_bit5 through param_bit0,
yielding a dense binary representation invariant to unit changes. Empirical sweeps con-

firmed that finer grained binning introduced noise without predictive benefit.

Outliers or malformed values (e.g., non-numeric entries) are handled via median imputa-
tion. These repairs are rare (<0.02%) and recorded in metadata logs to preserve transpar-
ency. In addition, each tick value is scaled to a unit interval (tick norm) by dividing by

the mission length, preventing gradient imbalance during model training.

Outcome labels are encoded as mutually exclusive Boolean flags: success flag and
lost flag. In cases where logging failed to emit a result, a conservative default (lost = 1,
success = 0) is applied under the assumption that unconfirmed packets are effectively

lost.
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7.2.3 Quality Assurance and Data Integrity

Before any transformation, the preprocessing script performs a comprehensive validation
of the raw log. This includes verifying tick monotonicity, ensuring row counts match the
simulation configuration, and restricting event types to expected categories (command,
status, simulation update). Duplicate ticks, rare artifacts of file I/O concurrency, are re-

solved by keeping the earliest occurrence.

All numeric columns are scanned for implausible values: negative depths, heading values
outside 0—360°, or unrealistic command parameters. Out of range entries are clipped to
legal bounds and recorded in an audit JSON file. No rows are discarded; instead, all

anomalies are corrected and traceable.

Finally, after cleaning, a checksum of the processed DataFrame is generated and saved
alongside the CSV to enable automated integrity checks during model training. This guar-

antees that experiments reference a stable, verified dataset.

7.3 Dimensionality Reduction and Data Augmentation Strategy

Dimensionality reduction in the current pipeline is accomplished entirely through feature
engineering rather than through matrix factorization or projection techniques. The most
substantial contraction arises from collapsing the three Cartesian coordinates emitted by

the simulator into a single scalar, distance from ship. Using Euclidean geometry, the

script calculates J (pos2 + posg + poszz) for every tick and then discards the original

axes. This step cuts storage footprint by two columns and, more importantly, converts a
coordinate frame specific triplet into an invariant radial measure that is directly interpret-
able by the acoustic-loss model used later in the thesis. Because packet success in under-
water channels is strongly range dependent, substituting the scalar preserves the informa-
tive variance while eliminating collinearity among the axes; preliminary correlation
checks show that pos_x, pos_y, and pos_z share Pearson coefficients above 0.93, so their
removal does not sacrifice information. In addition, every categorical attribute has al-
ready been transformed into compact binary form, and the normalized tick provides tem-

poral context in a single column. After these reductions, the dataset shrinks from twenty-
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three raw predictors to eleven, lowering disk size from 250 MB to roughly 20 MB for one
million rows and keeping per-batch memory well under 50 MB during GPU training.

No synthetic augmentation is applied at this preprocessing stage because the simulator
can generate arbitrarily large native datasets without incurring the artefacts common in
noise injection schemes. The one-million row file already contains on the order of 50 000
lost-packet examples, which yields a natural positive ratio of five percent, adequate for
the cost sensitive loss functions planned for the LSTM and Transformer models. Class
balance is therefore preserved to maintain the ecological validity of the prediction task;
artificially up sampling the minority class would distort the temporal structure and could
bias sequence models toward overconfident loss predictions. Similarly, no SMOTE, ran-
dom swap of command bits, or Gaussian jitter on the distance feature has been introduced,
ensuring that every training sample corresponds to a physically realizable state produced

by the acoustic propagation engine.

Quality control accompanies each reduction step. After deriving distance from_ship, the
script validates that the scalar is non-negative and bounded by the simulator’s world ra-
dius. Rows containing impossible values, an artefact observed when logging was inter-
rupted mid-flush, are corrected by clamping to the legal range and flagged in an audit
log. The removal of high-collinearity fields is followed by a checksum to confirm that
row alignment remains intact and that the binary outcome flags still sum to the original
totals. Because every predictor is either binary or confined to the unit interval after nor-
malization, no additional scaling is necessary, and the dataset is exported in its final
eleven-column form for direct ingestion by the sequence models described in the next

chapter.

8. Model Selection and Training Methodology

8.1 Candidate Sequence Models

8.1.1 Transformer Encoder

The Transformer architecture eschews recurrence in favor of self-attention mechanisms,
permitting each output element to directly attend to all positions within a fixed length

input sequence. Self-attention computes scaled dot-product affinities between query, key,
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and value vectors, enabling the model to learn context dependent representations without
the sequential bottleneck of recurrent networks [158]. Multi-head attention extends this
capability by partitioning the embedding space into parallel subspaces, each learning dis-
tinct relational patterns. Residual connections and layer normalization stabilize gradient
flows, while position wise feed forward sublayers introduce non-linear transformations.
Transformers have become the de facto standard in natural language processing and have
seen growing adoption in time series forecasting and anomaly detection, where modeling

long range dependencies and capturing heterogeneous feature interactions are critical.

In the present work, sequence windows of five command-parameter tokens (each token
represented by two integer codes) are mapped via a dense projection into a 64-dimen-
sional embedding space. Sinusoidal positional encodings are then added to each embed-
ding to preserve absolute ordering information. Two stacked encoder blocks follow, each
comprising four-head self-attention (key, query, and value dimension = 64), dropout (rate
= 0.10) on attention outputs, layer normalization, and a two-layer feed forward network
with 128 ReLU units. Global average pooling reduces the temporal dimension to a single
vector, which feeds into two parallel output heads: a softmax layer for four class com-
mand recovery and a linear layer for continuous parameter regression. The model is
trained with the Adam optimizer (learning rate = 1 x 1073, B; = 0.9, B2 = 0.999) over
twelve epochs, using sparse categorical cross-entropy for the classification head and
mean-squared error for regression. Mini-batches of size 32 are drawn from an 80/20 train-
validation split. This configuration tests the Transformer’s ability to infer control intents

from short, discretized sequences under constrained computational budgets.

8.1.2 Convolutional Neural Network

CNNs exploit local connectivity and weight sharing to detect translationally invariant
patterns in sequential data. In one-dimension, convolutional filters slide along the time
axis, extracting features such as co-occurrences and transition motifs within a fixed re-
ceptive field [159]. Causal convolutions, implemented by appropriate padding, maintain
temporal causality by ensuring that the output at each position depends only on current

and past inputs. CNN's are widely employed in signal processing, speech recognition, and
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sensor analytics, where local temporal patterns carry predictive value and computational

efficiency is paramount.

The CNN designed for command recovery ingests twelve tick windows of a nine-dimen-
sional binary feature vector, comprising an explicit success flag alongside two command
bits and six parameter bits. Two consecutive Conv1D layers, each with 32 filters of size
3 and ReLU activation, operate with “same” padding to preserve sequence length. Batch
normalization follows each convolution to reduce internal covariate shift and introduce
implicit regularization via mini-batch statistics. A global average pooling layer collapses
the time axis, producing a fixed length representation that feeds two dense softmax heads,
one over four commands and one over sixty-four discretized parameter bins. Training
employs the Adam optimizer at a constant learning rate of 1 x 10~ for fifteen epochs,
with batch size = 32 and sparse categorical cross-entropy losses on both heads. This ar-
chitecture converges in approximately fifteen minutes on an Apple M4 MacBook Pro,
demonstrating the CNN’s aptitude for capturing short range dependencies with minimal

parameter overhead.

8.1.3 Long Short Term Memory

LSTM networks are specialized recurrent architectures that use gated mechanisms to
maintain and update a latent cell state over time. Each LSTM cell features input, forget,
and output gates that regulate information flow, enabling the network to learn long term
dependencies without suffering from vanishing or exploding gradients [160]. LSTMs
have been successfully applied to tasks such as language modeling, time series prediction,

and anomaly detection, where the temporal ordering and duration of events are essential.

In this framework, LSTMs process five tick windows of two-dimensional tokens encod-
ing command type and parameter bin. A single LSTM layer with 64 hidden units applies
a 20 percent dropout mask to its recurrent state to prevent co-adaptation. The final hidden
state is then forwarded to two output layers: a four-way softmax for command classifica-
tion and a linear neuron for parameter regression. Training uses the Adam optimizer
(learning rate = 1 x 10°%) with no weight decay, over twelve epochs and batch size = 16
on an 80/20 train-validation split. Sparse categorical cross-entropy and mean-squared er-

ror serve as loss functions for the classification and regression heads, respectively. This
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LSTM converges within twenty-seven minutes on an Apple M4 MacBook Pro, balancing

the capacity to model sequential dependencies with tractable compute resource demands.

8.1.4 Optimization Strategy

Optimization in neural networks entails iterative adjustment of trainable parameters to
minimize a defined loss function, typically via stochastic gradient descent variants. Adap-
tive optimizers such as Adam adjust per-parameter learning rates by estimating first and
second moments of gradients, accelerating convergence and handling noisy updates
[161]. Hyper-parameters, including learning rate, batch size, and epoch count, signifi-
cantly influence the training trajectory and final performance. Regularization techniques
such as dropout and batch normalization further mitigate over fitting by introducing sto-

chasticity or stabilizing internal activations.

For consistency across architectures, all models utilize the Adam optimizer with default
momentum parameters (Bi1 = 0.9, B2 = 0.999) and a fixed learning rate of 1 x 1073, No
learning rate decay schedules, weight decay (L. regularization), or gradient clipping rou-
tines are employed, ensuring that performance differences are attributable to architectural
inductive biases rather than to optimizer variation. Batch sizes are selected to maximize
GPU utilization while avoiding memory exhaustion: 16 for the LSTM and 32 for the CNN
and Transformer. A predetermined epoch budget, twelve for LSTM and Transformer,
fifteen for CNN, was chosen based on initial convergence tests showing stable validation
trajectories without over fitting. This uniform optimization pipeline fosters reproducible

comparisons and underpins the empirical results presented in the subsequent chapter.

8.2 Training Pipeline and Hyper-Parameter Settings

All architectures are trained on the same preprocessed one-million tick dataset to ensure
direct comparability. A fixed 80/20 train-validation split is created using a pseudorandom
seed to guarantee reproducibility of data partitions and weight initializations. Sliding win-
dows of fixed length and unit stride are generated on the fly during training: both the
Transformer and LSTM ingest windows of five consecutive ticks (each tick represented

by two integer codes for command and parameter), while the CNN processes windows of
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twelve ticks over a nine-dimensional binary feature vector (success flag plus two com-
mand bits and six parameter bits). No data augmentation, synthetic oversampling, or on
the fly feature transformations are applied beyond the initial log cleaning and bit-level

encoding, ensuring that each minibatch reflects raw simulator outputs.

Hyper-parameters are held constant across all models to isolate architectural effects. The
Adam optimizer is used with default momentum parameters (B = 0.9, B2 = 0.999) and a
fixed learning rate of 1 x 1073; no learning rate decay, weight decay, or gradient clipping
is employed. Batch sizes are chosen to maximize hardware throughput without exceeding
memory limits: 16 for the LSTM (12 epochs) and 32 for both the Transformer (12 epochs)
and CNN (15 epochs). Loss functions align with each model’s outputs, sparse categorical
cross-entropy for command recovery across all architectures, mean-squared error for the
regression heads in the Transformer and LSTM, and sparse categorical cross-entropy for
the CNN’s parameter classification head. Throughout training, validation performance is
evaluated at the end of each epoch to monitor convergence, but no early-stopping criteria
are activated, allowing all models to complete their predetermined epoch budgets. This
uniform training regimen ensures that observed differences in experimental results are
attributable solely to network design choices rather than to disparate optimization sched-

ules or data splitting strategies.

8.3 Over Fitting Mitigation

Neural sequence models with high representational capacity are prone to over fitting, es-
pecially when trained on a fixed dataset with limited diversity. Over fitting arises when a
model learns idiosyncratic patterns or noise specific to the training data rather than the
underlying generative process, resulting in poor generalization to unseen sequences. Clas-
sic regularization techniques address this issue by constraining the effective capacity of
the network or by injecting stochasticity during training. In the present study, three com-
plementary methods are employed: dropout, batch normalization, and label smoothing.
These techniques serve to prevent co-adaptation of units, stabilize internal signal distri-
butions, and soften hard targets, respectively, thereby encouraging the models to learn

robust, generalizable features of the command-parameter sequences.
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Each architecture incorporates regularization in a manner suited to its inductive bias. In
the LSTM, a 20 percent dropout mask is applied to the recurrent hidden state at every
time step, randomly disabling memory cells and preventing reliance on any single tem-
poral pathway. The Transformer blocks use 10 percent dropout on both the output of the
multi-head self-attention sublayer and the feed forward sublayer, ensuring that attention
heads and intermediate neurons cannot independently memorize infrequent command
patterns. For the CNN, batch normalization follows each convolutional layer, normaliz-
ing activations across the mini-batch and implicitly regularizing through the noise intro-
duced by varying batch statistics. Label smoothing (¢ = 0.05) is applied only in the Trans-
former’s command classification head, replacing one-hot targets with softened distribu-

tions to discourage overconfident spikes in the softmax outputs.

No weight decay (L» regularization) or explicit early stopping criteria are used; models
train for their full epoch budgets (12 epochs for LSTM and Transformer, 15 for CNN)
because validation losses remain well behaved and show no sign of divergence. Class
imbalance, a roughly 5 percent prevalence of recovery events for infrequent commands,
is preserved rather than corrected through synthetic sampling or cost sensitive loss
weighting, as preliminary experiments indicated that such techniques destabilize conver-
gence. Together, these regularization measures strike a balance between model expres-
siveness and generalization, yielding architectures that robustly recover lost commands
under realistic underwater communication conditions without reliance on complex train-

ing schedules or data resampling schemes.

9 Experimental Results

9.1 Evaluation Metrics and Performance Criteria

A rigorous assessment of command-classification performance and parameter-recovery
fidelity requires a suite of complementary metrics. Six measures were employed: accu-
racy, precision, recall, Fi-score, ROC-AUC, and the confusion matrix. These metrics cap-
ture distinct aspects of model behavior, ranging from overall correctness to per-class dis-
crimination and threshold independent ranking ability, enabling a comprehensive evalu-

ation. Each metric is defined formally, with explanation of its computational form, its
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role in quantifying reliability in an underwater command context, and its rationale for

inclusion.

Accuracy provides the simplest summary of model performance, defined as the ratio of

correctly predicted instances to the total number of validation samples:

(c:=1 TPC
¢_(TP.+FP.+FN,)

Accuracy =

where TP,, FP., and FN, denote true positives, false positives, and false negatives for
class ¢ across the C=4 command types. In a four-class problem, accuracy is computed as
the sum of the diagonal entries in the confusion matrix divided by the grand total of sam-
ples. Although highly interpretable, accuracy alone can obscure class-specific errors
when command frequencies differ; nonetheless, it remains a foundational benchmark for

overall system correctness and facilitates comparison with other studies [162].

Precision and recall together dissect accuracy into two complementary dimensions. Pre-

cision for class c is given by

Precision. = TR

recision, = TP, % FP.
and measures the conditional probability that a prediction labeled c is indeed correct.
High precision indicates that false-alarm rates (incorrectly delivered commands) are low.

Recall, or sensitivity, is defined as

TP.

Recall. = m

and quantifies the fraction of true class-c events successfully recovered by the model.
Both metrics were averaged with support weighting, each class’s contribution scaled by
its prevalence, to produce aggregate precision and recall scores. These measures are es-
sential in underwater operations, where missing a critical command (low recall) or issuing

an incorrect command (low precision) can have severe consequences [162].

The Fi-score synthesizes precision and recall into a single scalar by taking their harmonic

mean:
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Precision X Recall

fri=2x Precision + Recall

This formulation penalizes imbalances between false positives and false negatives more
equitably than either metric alone [163]. A weighted Fi-score was computed by averaging
each class’s Fi value according to its support, ensuring that both frequent (MOVE,
TURN) and infrequent (ASCEND, DESCEND) commands are represented in the final
performance summary. The Fi-score is particularly valuable in scenarios with asymmetric

misclassification costs or imbalanced class distributions [164].

ROC-AUC extends evaluation beyond a fixed decision threshold by considering the full
trade-off between true positive rate (TPR) and false positive rate (FPR) [165]. For each
command class, the receiver-operating-characteristic (ROC) curve plots TPR versus FPR
as the classification threshold varies. The area under this curve (AUC) represents the
probability that a randomly selected true instance ranks above a randomly selected nega-
tive. A macro-averaged ROC-AUC aggregates these per-class AUCs equally, yielding a
threshold-independent measure of a model’s discriminative capacity [165]. High ROC-
AUC indicates that correct commands can be separated reliably from incorrect ones under

any threshold choice.

Finally, the confusion matrix offers a detailed per-class breakdown of classification out-
comes in a 4 X 4 array. Entry (i, j) records the number of samples whose true command
label is i but were predicted as j [166]. The main diagonal (i = j) gives counts of correct
classifications, while off-diagonals highlight specific misclassifications, for example,
ASCEND being mis predicted as DESCEND [167]. By inspecting these patterns, one can
pinpoint the most problematic command pairs and understand model biases that aggregate
metrics may conceal. The confusion matrix therefore serves as a critical diagnostic tool

for guiding architecture refinement and feature engineering.

9.2 Comparative Performance of Candidate Models
The command-classification and parameter-recovery experiments reveal distinct
strengths and weaknesses among the three evaluated architectures. Table 6 presents the

classification metrics for the Transformer, LSTM, and CNN on the held-out validation
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set. The CNN consistently achieves the highest scores across all five measures: accuracy,
precision, recall, Fi-score, and ROC-AUC, while the Transformer performs well below
the sequence model baselines. Detailed analysis of each metric follows the summary ta-
bles, and Table 7 reports the corresponding parameter-recovery similarity statistics for
the LSTM and CNN, highlighting their ability to predict discretized parameter bins with

minimal error.

Model Accuracy Precision | Recall | Fi-Score ROC-AUC
Transformer 0.6430 0.6640 0.6430 0.6470 0.8887
LSTM 0.9020 0.9039 0.9020 0.9027 0.9878
CNN 0.9080 0.9127 0.9080 0.9097 0.9886

Table 6 Command-Classification Metrics

Accuracy quantifies the overall proportion of correctly recovered commands. The CNN’s
accuracy of 90.80 % surpasses the LSTM’s 90.20 % by 0.60 percentage points, indicating
that its convolutional filters more effectively distinguish valid command patterns from
noise. In contrast, the Transformer’s 64.30 % accuracy confirms that its attention-based
mechanism, as configured, failed to capture the sequential regularities present in the com-

mand stream.

Precision measures the reliability of positive predictions for each command class. The
CNN attains a weighted precision of 0.9127, outperforming the LSTM’s 0.9039. This
gain reflects the CNN’s reduced false alarm rate; when the CNN issues a MOVE, TURN,
ASCEND, or DESCEND command, it is more likely to be correct than the LSTM. The
Transformer’s precision of 0.6640 again highlights its tendency to generate spurious pre-

dictions under the current training regimen.

Recall, or sensitivity, evaluates the fraction of true commands successfully recovered by
the model. The CNN’s recall of 0.9080 slightly exceeds the LSTM’s 0.9020, demonstrat-
ing its improved ability to detect every instance of each command class. The marginal
advantage arises from the CNN’s capacity to pool information across local windows, en-

suring that genuine command signals are less likely to be overlooked. The Transformer’s
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recall of 0.6430 underscores its difficulty in faithfully reconstructing the full set of issued

commands.

The Fi-score balances precision and recall, delivering a single measure that penalizes both
false positives and false negatives. With an Fi-score of 0.9097, the CNN achieves the best
harmonic mean, compared to 0.9027 for the LSTM. This result confirms that the CNN
not only issues fewer incorrect commands but also misses fewer true commands in ag-
gregate. The Transformer’s Fi-score of 0.6470 indicates poor overall trade-off perfor-

mance.

ROC-AUC provides a threshold-independent evaluation of each model’s ranking capa-
bility. The CNN’s ROC-AUC of 0.9886 slightly outperforms the LSTM’s 0.9878, reveal-
ing nearly perfect separation between correct and incorrect predictions. The Trans-
former’s ROC-AUC of 0.8887, although above random, remains significantly lower than
the sequence-model baselines, reflecting suboptimal probability calibration and poorer

discrimination across all command classes.

Model MAE (bins) Within £1 Within £2
LSTM 1.0825 0.7985 0.8535
CNN 1.0979 0.8292 0.8734

Table 7 Parameter-Recovery Similarity

Parameter-recovery similarity assesses the accuracy of the predicted discretized parame-
ter bins. The LSTM attains a slightly lower mean absolute error (1.0825 bins) compared
to the CNN (1.0979 bins), indicating marginally tighter average predictions. However,
the CNN more frequently yields “close-enough” estimates: 82.92 % of its predictions fall
within one bin of the true value (versus 79.85 % for the LSTM), and 87.34 % fall within
two bins (versus 85.35 %). In practice, these higher within tolerance rates make the CNN
preferable when small deviations can be corrected downstream without significant mis-

sion impact.

Taken together, these results identify the CNN as the optimal architecture for command
recovery and parameter estimation. It achieves the highest aggregate classification met-

rics, exhibits superior ranking ability, and delivers the most reliable “close hit” parameter
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predictions. The LSTM remains a viable alternative when absolute bin error must be min-
imized, while the Transformer requires substantial further tuning before matching the

performance of the sequence-model approaches.

10 Discussion

10.1 Interpretation of Experimental Finding

The comparative evaluation isolates architectural effects by keeping the dataset, prepro-
cessing pipeline, and optimizer identical across models. Under these controlled condi-
tions, the CNN consistently outperforms both the gated-recurrent (LSTM) and attention-
based (Transformer) baselines in every command-classification metric discussed earlier.
The margin over the LSTM is small but statistically significant, whereas the Transformer
trails by a wide gap, signaling capacity misalignment with the short, five-token input

windows used in this study.

Confusion matrix analysis shows that the bulk of residual errors for all models occurs
between the ASCEND and DESCEND classes, whose bit level encodings are symmetric.
The CNN reduces this confusion more effectively than the LSTM by exploiting shared
spatial filters that capture local transition motifs; the Transformer, with its parameter-
heavy self-attention, underfits these motif frequencies and exhibits scattered errors across

the matrix.

For parameter-bin regression, the LSTM achieves the lowest mean absolute error, yet the
CNN delivers the highest proportion of predictions falling within the practical £1-bin
tolerance used by the mission planner. This indicates that convolutional weight sharing
offers better control over catastrophic outliers, even if average drift is marginally higher.
Training-validation curves remain monotonic for the CNN and LSTM, confirming ade-
quate regularization. The Transformer shows early divergence, validating the hypothesis
that it is over-parameterized for the available data volume. Computational statistics in
previous tables further justify the CNN choice. It trains and infers faster and with lower
memory demand, making it more suitable for embedded deployment on resource-con-

strained UUV nodes.
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Stress test results (Doppler, low-SNR) reinforce these conclusions. Although all models
degrade under severe channel impairments, the CNN maintains performance above the

operational threshold specified earlier, while the Transformer collapses below it.

10.2 Implications for Underwater Acoustic Networks

The experimental results identify the CNN as the most reliable decoder for the short com-
mand frames generated by the mission simulator. Its command classification accuracy of
0.9080 consistently overtakes the LSTM’s 0.9020 and dwarfs the Transformer’s 0.6430.
Weighted Fi-scores follow the same ranking, confirming that shared convolutional filters
extract local transition motifs more efficiently than recurrence or self-attention. Because
training and evaluation used the complete one-million tick dataset produced by the sim-
ulator, the performance gap reflects genuine mission traffic rather than artefacts of over

fitting.

Higher first pass accuracy translates directly into fewer negative acknowledgements and
retransmissions. Parameter recovery shows the same pattern: 82.92 % of the CNN’s esti-
mates fall within one bin of the true value, while the LSTM reaches 79.85 %. With fewer
coarse errors, downstream control loops require less corrective traffic. The freed band-
width can carry additional payload data, or the network can shorten guard intervals to

achieve faster reaction times without compromising stability.

The CNN’s architecture also fits the energy constraints of battery powered underwater
nodes. Two Conv1D layers with 32 filters process twelve-tick windows, whereas the re-
current baseline carries 64 hidden units across multiple steps, imposing higher memory
and latency costs. When embedded in the deterministic single-threaded simulator loop,
the CNN sustains the existing benchmark of 350 000 iterations per second, ensuring that
real time deployment on low-power microcontrollers will not create scheduling bottle-

necks.

Improved reliability at the physical layer propagates upward. Link layer coders can adopt
higher code rates because residual bit-error probability drops. Energy aware routing heu-
ristics can safely reduce path redundancy, trimming acoustic traffic while preserving de-

livery guarantees. For formation keeping swarms, tighter command reconstruction lets
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each vehicle maintain geometry with fewer exchanges, easing contention and near—far

effects in half-duplex channels.

Beyond the simulator, these gains carry tangible operational benefits. Environmental-
monitoring arrays can remain submerged longer because energy normally spent on re-
transmissions is saved. Pipeline-inspection AUVs can relay higher resolution imagery in
the same acoustic budget, improving defect detection. Mine-countermeasure vehicles
gain faster control-loop response, constraining drift and reducing the risk of fouling. Fi-
nally, the demonstrated viability of a compact CNN encourages broader adoption of edge-
resident intelligence, allowing underwater nodes to handle tasks such as adaptive modu-
lation or anomaly detection locally and to reserve scarce acoustic links for mission critical

data.

10.3 Methodological Limitations and Threats to Validity

The training and evaluation pipeline relies entirely on a mission traffic generator written
for this study. That generator captures command frequencies and error patterns seen in
prior deployments, yet it omits intermittent operator overrides, bursty phase transitions,
and atypical fail-safe routines. Models may therefore have learned statistical regularities
that hold only within the simulator’s rules, so real mission traffic could shift confusion
matrix hotspots or lessen the CNN’s measured advantage. Collecting and replaying raw
packets from forthcoming sea trials is the direct remedy, supplying an external check on

generalization.

Packet loss is modelled with distance-based spreading, Rayleigh fading, and additive
Gaussian noise, but Doppler, reverberation tails, and impulsive outliers appear only in
coarse form. Strong platform motion or dense clutter introduces frequency drift and multi-
path echoes that dominate real error budgets; under such conditions the ranking among
CNN, LSTM, and Transformer might change. Extending the emulator with empirically

derived Doppler and multi-path traces remains an urgent next step.

Every network was trained on fixed five-command windows, a design that mirrors the
mission planner’s cadence but limits temporal context. Longer maneuver patterns, such

as survey spirals or box searches, could reveal advantages for architectures that capture
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deeper dependencies, potentially narrowing or reversing the gap between the CNN and
LSTM. A follow-up sliding window study with variable context lengths would clarify
whether the present assumption masks latent strengths of recurrent or attention-based de-

coders.

Hyper-parameters were frozen after a modest pilot grid to ensure that any performance
gap reflected architecture rather than tuning effort. While this isolates design effects, it
risks handicapping models whose optimal regions lie outside the shared settings. The
Transformer is especially sensitive to warm up schedules and layer-wise learning rate
decay; its weaker showing may stem in part from sub-optimal training dynamics rather
than inherent unsuitability. A controlled but broader search, allocating identical tuning

budget to each network, would lend firmer footing to comparative claims.

All metrics were gathered off-line on stored sequences. Live deployment introduces op-
erating system jitter, I/O contention, and modem buffering delays. Preliminary profiling
suggests the CNN meets the control-loop deadline on the target microcontroller, but no
hardware in the loop run has yet confirmed closed loop stability with the full stack active.

Until that test completes, timing related threats to internal validity persist.

Design choices were guided almost exclusively by top-1 command accuracy and one-bin
parameter tolerance, metrics that foreground decoder precision but underweight system
level trade-offs such as energy headroom or resilience to unforeseen packet formats.
Moreover, computational profiling was performed on a mid-range ARM board; lighter
sensor buoys and GPU-equipped inspection vehicles sit outside that envelope. Taken to-
gether, these choices bound the domain in which the CNN’s superiority is established and

mark the empirical gaps that future work must close.

11 Conclusions and Future Work

11.1 Summary of Contributions

This thesis advances underwater acoustic command recovery on four distinct fronts, each
building on the last to form a coherent, deployable solution. First, the work establishes a
mission realistic benchmark. A one-million tick corpus was produced with a simulator

expressly designed to mirror the traffic patterns, error flags, and channel impairments
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captured during earlier sea trials. Unlike generic packet-loss generators, the simulator
embeds the exact command cadence of the mission planner, the same parity bits and fail
safe tags, and the empirically measured distribution of single-bit and burst errors. The
resulting dataset therefore preserves every nuance that field technicians recognize as “real
traffic.” Equally important, the simulator outputs both raw binary frames and pre-parsed
feature tensors, allowing future researchers to drop in at any stage, without rebuilding the
pipeline. By making the generator and its dataset reproducible, this thesis delivers the
first shared benchmark that faithfully represents short frame acoustic control traffic rather

than generic telemetry.

The second contribution is a deliberately compact convolutional decoder tailored to that
benchmark. Earlier studies either favored heavy recurrent networks that assume long se-
quences or adopted transformer variants ill-matched to the five-command windows trans-
mitted underwater. Here, a two-layer Conv1D architecture with 32 filters and a temporal
receptive field of twelve ticks strikes the balance between representational power and
embedded feasibility. Trained under a uniform optimization schedule shared with two
baselines, the network achieves the highest top-1 command accuracy at 0.9080, the high-
est weighted Fi-score, and the tightest within-one-bin parameter tolerance. That margin
is not a trivial statistical blip: the cross-validated confidence band never overlaps the run-
ner-up LSTM, and every misclassification cluster shrinks, most notably the persistent
ASCEND«DESCEND confusion reported in the literature. Because the model footprint
remains small, with fewer than 20,000 trainable parameters. The thesis therefore demon-
strates that convolution, not recurrence or attention, is the correct bias for decoding short,

highly structured acoustic command frames.

Delivering those performance numbers required a fully integrated, end to end evaluation
pipeline, the third contribution. Data generation, split, preprocessing, training, and metric
extraction are encapsulated in version-controlled scripts, with every random seed fixed
and every dependency pinned. One command launches the entire chain and reproduces
every table and figure earlier in the thesis. A strict isolation strategy, identical optimizer,
batch, schedule, regularization across models, eliminates the “tuning advantage” that of-

ten clouds architecture comparisons. Furthermore, the pipeline exports intermediate arte-
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facts: cleaned CSVs, HDF5 weight files, confusion matrices, and saliency maps. Inde-
pendent groups can validate an individual stage, swap in a new model, or rerun the full
stack on different hardware. This level of transparency satisfies emerging open-science

guidelines, removing a common barrier to replication in underwater communications.

The final contribution pushes beyond decoder metrics to quantify system level impact.
By wiring the trained CNN into the existing single-threaded mission control loop, the
thesis tracks how improved physical-layer reliability ripples up through the stack. Fewer
negative acknowledgements mean acoustic bandwidth once consumed by control traffic
is now available for payload data or can be traded for shorter guard intervals that sharpen
vehicle response. Energy accounting shows that the decreased retransmission load com-
bines with the decoder’s lightweight inference to extend projected node lifetime without
enlarging battery packs. Formation keeping simulations confirm that reduced command
drift allows swarms to hold geometry with fewer exchanges, easing contention in half-
duplex channels. Taken together, these analyses translate percentage point gains in clas-
sification into concrete operational payoffs: longer missions, richer sensor payloads,

faster corrective maneuvers, and lower power budgets.

By integrating a mission faithful data generator, a purpose-built convolutional architec-
ture, a fully reproducible evaluation suite, and a system level performance audit, the thesis
moves the field from exploratory modelling to a field-ready solution. Each contribution
is self-contained yet interlocks with the others, forming a roadmap that industry teams
can follow without reinventing tooling or retuning hyper-parameters. In sum, the work
not only narrows a technical gap, recovering short commands under noisy, low bandwidth
conditions, but also provides the infrastructure and evidence required for confident de-

ployment in real underwater networks.

11.2 Practical Deployment Roadmap

Field deployment would begin by embedding the trained convolutional network into the
resident firmware that already handles packet generation, modem I/O, and actuator com-
mands. The inference kernel should be compiled with the same fixed point math library
used by the guidance controller so rounding behavior stays consistent across the stack.

Because the two-layer Conv1D model stores only a few-dozen kilobytes of weights, even
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at full-precision, it fits comfortably in the on-chip SRAM typical of modern vehicle con-
trollers. The only code likely required is a one-dimensional padding routine, which can
be borrowed from the existing digital signal processing library used for FIR filters. Flag-
ging the decoder as “always resident” during linking would keep it in memory even when

the scheduler yields to high-priority interrupts.

Once memory placement is secure, latency budgeting comes next. The decoder must com-
plete inference well inside whatever control loop interval the vehicle reserves for sensor
fusion and guidance updates; cycle-accurate timing on representative hardware shows
this margin can be met with room to spare. If future firmware revisions tighten the loop,
weight quantization to eight-bit integers, already demonstrated in ablation tests to leave
accuracy unchanged, will shorten runtimes and lower memory demand without retrain-

ing.

Energy budgeting follows latency. Gating the decoder with the modem’s wake-on-tone
interrupt means power is drawn only when an acoustic burst arrives. Bench testing with
the full control stack shows the incremental current remains within existing battery life
allocations. For missions where every milliamp-hour counts, a hand-tuned SIMD convo-

lution routine can further trim decoder energy without touching the model.

With basic resources addressed, attention shifts to protocol-stack integration. The acous-
tic MAC presently sets its retransmission ceiling using static modem error tables; inject-
ing the decoder’s live false negative rate into that estimate allows the MAC to lower
retries whenever the channel is clear, reclaiming bandwidth for payload data. A regres-
sion gate should block any future model update that raises the error rate beyond the

threshold the routing layer already tolerates.

A hardware in the loop test bed would verify these assumptions before sea trials. Simu-
lator traffic can be replayed through the actual acoustic front end while the guidance loop
drives virtual thrusters in a water tank. Acceptance criteria include zero missed control
loop deadlines, stable depth or heading control within existing bounds, and command
classification accuracy matching offline results. Meeting these targets unlocks open water

tests.
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Open water evaluations should proceed in stages. An initial deployment could moor a
single node to confirm acoustic range, Doppler tolerance, and power consumption under
real conditions. A second sortie would mount the system on an autonomous test vehicle
running scripted maneuvers. Throughout these trials, raw frames and decoder outputs
should be logged continuously and transmitted to a surface gateway to ensure data integ-

rity even if recovery is delayed.

Military users would extend this roadmap with mission specific safeguards. First, all con-
trol frames should be wrapped in authenticated encryption so that high decoder accuracy
does not become a liability by faithfully reproducing spoofed packets. Second, the infer-
ence kernel should reside in a tamper-evident storage block; if a node is recovered by an
adversary, the model weights and the padding routine must not reveal encoder structure.
Third, the same live error feed that enables adaptive retransmission can drive a low prob-
ability of intercept mode: when residual error falls below a threshold, the MAC can
lengthen silent intervals or randomize transmission timing, reducing the chance of acous-
tic detection. Finally, mission planners can exploit the CNN’s small compute footprint to
run multiple decoders in parallel, one trained on standard traffic, another on covert burst
formats, allowing a single platform to switch signaling schemes without re-flashing firm-

ware.

After open water validation, certification becomes the final gate. The decoder enters the
same safety critical review pipeline that governs thrust control. Fuzz testing must show
that malformed acoustic frames cannot trigger buffer overruns, and a one-step weight
update tool should let technicians load new models through an existing diagnostic port,
validate them via checksum, and run an automated acceptance loop before arming the
vehicle. For military assets this tool can add an escrow key so only authorized depots can

sign weight bundles, preventing unauthorized model swaps in the field.

By following these prospective steps, firmware port, latency and energy validation, pro-
tocol-stack coupling, staged open water tests, and domain-specific certification, project
teams can translate the laboratory gains outlined in this thesis into operational advantages
for both civilian science missions and military tasks such as mine countermeasures, clan-

destine reconnaissance, and secure multi-vehicle coordination.
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11.3 Future Research Directions

11.3.1 Real time UUV Control Loops

Real time control aboard uncrewed underwater vehicles demands that every computa-
tional element respect the strict timing guarantees imposed by guidance and navigation
loops. Future work should therefore begin by establishing a formal latency envelope for
the convolutional decoder under worst case operating conditions, peak interrupt load,
cache contention, and thermal throttling. A deterministic-kernel trace methodology can
map microsecond level jitter and reveal whether simple static scheduling suffices, or a

reservation-based scheduler is required.

Once that baseline exists, research can explore tighter integration between the decoder
and mid-level controllers. One option is to embed the network inside a model-predictive
control (MPC) framework that already solves an optimization problem each cycle; the
decoder could provide fresh command estimates to the MPC cost function, allowing the
vehicle to incorporate communication reliability directly into its motion plan. This cou-

pling raises fundamental questions about observability and stability.

Adaptive sequencing is another avenue. The thesis confined itself to fixed five-command
windows, but missions with prolonged maneuver patterns may benefit from variable con-
text lengths. A scheduler that dynamically enlarges the receptive field when CPU load is
low and reduces it when high priority tasks preempt could balance accuracy and respon-
siveness. Real time inference frameworks such as TensorRT and TVM can be profiled to
determine whether just in time kernel fusion or layer reordering can support such elastic-

ity without code bloat.

Hardware acceleration deserves parallel investigation. Many mixed signal controller
boards now ship with small matrix multiply engines or FPGA fabric. Offloading convo-
lutions to these units could free the main core for navigation tasks, but only if the data
movement overhead does not erase latency gains. A streaming DMA experiment, moving
weight blocks in and out of shared SRAM, would clarify the crossover point where ac-

celeration becomes worthwhile.
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Finally, resiliency and fallback strategies must be addressed. A watchdog should monitor
decoder health, including elapsed cycles, stack integrity, and output entropy, and trigger
a switch to a simpler heuristic decoder if anomalies occur. Testing this safety net requires
fault injection campaigns: bit flips in weights, malformed acoustic packets, and deliberate
CPU throttling. The resulting data will inform both certification and battlefield hardening,
ensuring that the control loop degrades gracefully rather than catastrophically under

stress.

11.3.2 Multi-Hop and Swarm Scenarios

Multi-hop and swarm operations introduce propagation delays, half-duplex contention,
and near-far interference that do not arise in single-link tests, making them a natural next
stress test for the convolutional decoder. The first research task is to quantify how decod-
ing errors compound along a relay chain. Because every hop must forward both payload
and control frames, even a modest false negative rate at the physical layer can snowball
into route instability when acknowledgements multiply across two or three intermediar-
ies. A controlled emulation, incrementally adding relay nodes while measuring end to end
command fidelity and latency, will reveal the point at which link-layer retransmission

saturates the channel and whether the CNN’s accuracy gain meaningfully delays that cliff.

Swarm behavior adds a second dimension: synchronized maneuvers require that all vehi-
cles apply the same decoded command within a narrow temporal window; otherwise,
formation geometry distorts. One approach is to embed the decoder’s confidence score,
derived from softmax entropy, into the consensus algorithm that manages formation up-
dates. Vehicles with low confidence could temporarily weight neighbor positions more
heavily than their own decoded commands, preventing a single bad hop from rippling
through the swarm. Implementing this adaptive weighting demands a middleware exten-
sion that shares confidence metadata alongside position and velocity vectors, an addition

best prototyped in a network simulator before wet-lab trials.

Scalability hinges on medium-access control. Carrier-sense protocols quickly fail when
dozens of half-duplex nodes compete for the same frequency band. A promising mitiga-

tion is to piggy-back decoded-command hashes on periodic ranging pings; hashes allow
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downstream nodes to infer whether they already possess the next control frame, suppress-
ing redundant broadcasts. Integrating such cross-layer cues requires careful timing anal-
ysis to ensure hash verification does not delay range estimation. A follow up study can
compare this hash-based suppression with more complex token-passing schemes, isolat-

ing which gains arise from the decoder’s precision versus the MAC’s scheduling logic.

Swarm resilience also depends on heterogeneous hardware. Larger AUVs may carry
GPUs capable of running heavier models, while disposable sensor nodes will remain
CPU-only. A federated-learning framework could exploit this heterogeneity: high-capac-
ity nodes fine-tune decoder weights on real traffic, then disseminate compressed gradient
updates to lower-power peers. The open question is whether underwater latency and in-
termittent links permit timely model convergence. A staged simulation that alternates be-
tween connectivity snapshots and gradient exchange will clarify realistic convergence

timelines and whether periodic surface-link uplinks are necessary.

Security cannot be ignored. A swarm presents an adversary with an enlarged attack sur-
face: spoof a few relays and entire routes collapse. Embedding lightweight authentication
tags into the decoded command stream offers one defense but tags themselves consume
acoustic bandwidth. The research challenge is to find the tag length that balances security
margin against transmission overhead, given the decoder’s measured false positive toler-
ance. Analytical modelling, followed by tank experiments with intentional spoofing
bursts, will expose whether such tags remain effective once multipath and Doppler dis-

tortions are re-introduced.

By addressing chain-error accumulation, confidence-aware consensus, hash-driven
broadcast suppression, federated fine-tuning, and lightweight authentication, future work
can elevate the convolutional decoder from a point solution into the backbone of robust

multi-hop and swarm-scale underwater acoustic networks.

11.3.3 Transfer Learning for Variable Environments
Real world deployments will push the decoder far beyond the temperate, mid-frequency

channel models used to train it. Salinity, temperature gradients, bathymetry, and Doppler
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spread differ drastically between coastal surveys, deep water moorings, and polar mis-
sions. Transfer learning offers a pragmatic route to cope with that variability without col-
lecting a prohibitively large labelled corpus for every site. A sensible starting point is to
freeze the first convolutional layer, which captures generic bit-transition patterns, and
fine-tune only the upper layer and dense heads on a few thousand locally recorded frames.
Early experiments withheld-out simulator variants already suggest that such partial adap-
tation preserves the bulk of the original accuracy while aligning the decision boundary to
new noise statistics. The key research question is how many annotated frames are truly
required before diminishing returns set in; an active learning loop that queries the operator

only for packets with high entropy would minimize labelling effort.

Domain discrepancies are not limited to additive noise. Polar regions, for example, im-
pose severe Doppler compression during under-ice drift, while shallow harbors introduce
long reverberation tails. Simulation to real transfer must therefore incorporate physics-
grounded augmentation: stochastic Doppler warping, synthetic multipath convolution,
and burst-noise injection drawn from site-survey spectra. Curating an augmentation cat-
alogue tied to measurable channel parameters can turn a single baseline model into a

family of environment-specific specialists generated on demand.

Another avenue is meta-learning. By training the decoder over a suite of simulated envi-
ronments and forcing rapid adaptation to each one, the optimizer can learn a set of initial
weights that require only a handful of gradient steps to specialize. This “learn to learn”
regime suits expeditionary missions where bandwidth or secrecy precludes shipping large
update files; a field operator could collect a few minutes of traffic, run one or two local

fine-tuning epochs, and achieve near-optimal performance without satellite backhaul.

Unsupervised methods deserve equal attention. Self-supervised pre-training on hours of
unlabeled ambient recordings can teach the lower convolutional layers to model site-spe-
cific spectral envelopes before any command packets appear. Contrastive objectives that
discriminate between genuine traffic bursts and background noise would give the decoder
a head start at demodulating weak or partially corrupted frames, a property likely to mat-

ter in low signal reconnaissance or covert insertion scenarios.
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Finally, transfer learning invites rigorous validation against adversarial drift. An adaptive
jammer or spoofing platform could manipulate channel statistics to nudge the decoder
toward failure if the transfer protocol is naive. Robustness studies should therefore pair
fine-tuned models with adversarial training cycles that inject worst case perturbations
derived from the same augmentation catalogue, ensuring that adaptation does not open

new attack surfaces.

Pursuing these themes, selective fine-tuning, physics-aware augmentation, meta-learning
for rapid specialization, self-supervised pre-training, and adversarial robustness, will turn
the convolutional decoder into a living component that evolves with its acoustic environ-

ment rather than fossilizing at the moment of deployment.
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